
ON SPREADING SEQUENCES AND ASYMPTOTIC STRUCTURES

D. FREEMAN, E. ODELL, B. SARI, AND B. ZHENG

Abstract. In the first part of the paper we study the structure of Banach spaces with a
conditional spreading basis. The geometry of such spaces exhibit a striking resemblance to
the geometry of James’ space. Further, we show that the averaging projections onto sub-
spaces spanned by constant coefficient blocks with no gaps between supports are bounded.
As a consequence, every Banach space with a spreading basis contains a complemented
subspace with an unconditional basis. This gives an affirmative answer to a question of H.
Rosenthal.

The second part contains two results on Banach spaces X whose asymptotic structures
are closely related to c0 and do not contain a copy of `1:

i) Suppose X has a normalized weakly null basis (xi) and every spreading model (ei)
of a normalized weakly null block basis satisfies ‖e1 − e2‖ = 1. Then some subsequence of
(xi) is equivalent to the unit vector basis of c0. This generalizes a similar theorem of Odell
and Schlumprecht, and yields a new proof of the Elton-Odell theorem on the existence of
infinite (1 + ε)-separated sequences in the unit sphere of an arbitrary infinite dimensional
Banach space.

ii) Suppose that all asymptotic models of X generated by weakly null arrays are equiv-
alent to the unit vector basis of c0. Then X∗ is separable and X is asymptotic-c0 with
respect to a shrinking basis (yi) of Y ⊇ X.

1. Introduction

A basic sequence (xi) in a Banach space is called spreading if it is equivalent to all of its

subsequences. If, in addition, the sequence is unconditional then it is called subsymmetric.

When (xi) is spreading and weakly null it is automatically suppression unconditional. In

Section 2 we will focus most of our attention on spreading sequences that are not uncon-

ditional. A famous example is the boundedly complete basis of the James space J and we

shall see that much of the structure for J holds more generally for Banach spaces with a

conditional spreading basis. We observe that if (ei) is a normalized conditional spreading

basis for X then the difference sequence (di) = (e1, e2 − e1, e3 − e2, . . .) is a skipped un-

conditional basis for X. This means that if (xj) is a normalized block basis of (di) with

supp(xj) < ij < supp(xj+1) for some subsequence (ij) of N, then (xj) is unconditional.

Here supp(xj) refers to the basis (di), that is, if xj =
∑

i b
j
idi then supp(xj) = {i : bji 6= 0}.

It follows that, in the case (ei) is spreading but not weakly null, `1 6↪→ X (`1 does not
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embed isomorphically into X) if and only if the difference basis (di) is shrinking. Also we

show that c0 6↪→ X if and only if (ei) is boundedly complete. Furthermore, c0 and `1 do not

embed into X if and only if X is quasi-reflexive of order 1. It is interesting to note that

these (except the skipped unconditionality result) were already observed in the 1970’s by

Brunel and Sucheston [BS] for ESA (equal sign additive) bases, which is a stronger prop-

erty than spreading. However, our results are more general and the proofs are different.

The crucial part of our approach is an unconditionality result, Theorem 2.3a, which is of

independent interest. We also show that the well known averaging projection onto disjoint

subsets of a subsymmetric basis remains bounded for the conditional spreading case as long

as the subsets form a partition. One consequence is that X is isomorphic to D ⊕X where

D is the subspace spanned by (d2n)∞n=1. Moreover, every Banach space with a spreading

basis contains a complemented subspace with an unconditional basis. This answers an open

problem of H. Rosenthal.

In Section 3 we make a few remarks on Banach spaces that admit conditional spreading

models. Our study of the conditional spreading sequences were motivated by the problems

discussed in this section.

In section 4 we consider spaces whose asymptotic structure is closely related to c0. In

[OS] it was shown that if (xi) is a basis for X and all spreading models of normalized block

bases of (xi) are 1-equivalent to the unit vector basis of c0, then c0 embeds into X. Our first

result of Section 4 generalizes this as follows. If (xi) is weakly null and if every spreading

model (ei) generated by a weakly null block basis satisfies ‖e1 − e2‖ = 1 and `1 6↪→ X, then

c0 ↪→ X. This yields a quick proof of the Elton-Odell theorem [EO]. Namely, for every

Banach space X there exists an infinite sequence (zi) in the unit sphere SX and λ > 1 so

that ‖zi − zj‖ ≥ λ for all i 6= j. Indeed, if X contains `1 or c0 the result follows easily by

the non-distortability of c0 and `1. Otherwise, fix a weakly null normalized sequence (xi).

By our theorem, (xi) must have a normalized block basis with a spreading model (ei) with

‖e1 − e2‖ > 1 which yields an ε > 0 and an infinite (1 + ε)-separated sequence.

One of the long standing open problems on asymptotic structures of Banach spaces is

the following. Suppose that every spreading model of X is equivalent to the unit vector

basis of c0 (or `p). Does X contain an asymptotic-c0 (or asymptotic-`p) subspace? We

solve the c0 case with somewhat stronger assumption. If all normalized asymptotic models

(ei) of normalized weakly null arrays in X are equivalent to the unit vector basis of c0 and

`1 6↪→ X, then X∗ is separable and X is asymptotic-c0 with respect to a shrinking basis (yi)

of Y ⊇ X. Recall that (ei) is an asymptotic model of X, denoted by (ei) ∈ AMw(X), if
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there exists a normalized array (xij)i,j∈N so that (xij)
∞
j=1 is weakly null for all i ∈ N, and for

some εn ↓ 0, all n and all (ai)
n
1 ⊆ [−1, 1] and n ≤ k1 < k2 < . . . < kn

(1.1)

∣∣∣∣∣∥∥∥
n∑
i=1

aix
i
ki

∥∥∥− ∥∥∥ n∑
i=1

aiei

∥∥∥∣∣∣∣∣ ≤ εn.
The notion of asymptotic models is a direct generalization of spreading models and it was

introduced in [HO]. X is asymptotic-c0 if for some K < ∞ for all n and all asymptotic

spaces (ei)
n
i=1 are K-equivalent to the unit vector basis of `n∞ [MMT]. These notions are

recalled in Section 4.

2. Spreading bases

We begin with a result solving a problem asked of us by S. A. Argyros.

Theorem 2.1. Let (en) be a normalized basis for X. If every subspace spanned by a skipped

block basis of (en) is reflexive then X is either reflexive or quasi-reflexive of order 1.

Proof. The hypothesis yields that (en) is shrinking. If not, then for some normalized block

basis (xn) of (en) there exists f ∈ BX∗ and ε > 0 with f(xn) > ε for all n. But then (x2n)

is a skipped block basis of (en) which cannot be shrinking, hence cannot span a reflexive

space.

Let F ∈ X∗∗. Since the basis (ei) is shrinking F is the w∗-limit of (
∑n

i=1 F (e∗i )ei)
∞
n=1

where (e∗i ) is the biorthogonal sequence to (ei) (a basis for X∗). We claim that if

lim inf
n
|F (e∗i )| = 0,

then F ∈ i(X), where i(X) is the natural embedding of X into X∗∗.

Indeed, pick a subsequence (ij) such that
∑∞

j=1 |F (e∗ij )| < ∞. Let y =
∑∞

j=1 F (e∗ij )eij .

Then y ∈ i(X). Let G = F − y. Then G = w∗ − limn
∑n

j=1

∑
ij<i<ij+1

F (e∗i )ei and

(
∑

ij<i<ij+1
F (e∗i )ei)

∞
j=1 is a skipped block sequence which spans a reflexive subspace. Thus

G ∈ i(X) and so is F .

Now suppose X is not reflexive and let G ∈ X∗∗ and F ∈ X∗∗ \ i(X). Choose λ ∈ R
and a subsequence (in) of N so that G(e∗in) − λF (e∗in) → 0. Then by the claim above we

conclude that G− λF ∈ i(X). Therefore X∗∗ = RF ⊕ i(X). �

Remark 2.2. A generalization of the above from a basis to finite dimensional decompo-

sitions (FDD) is false. Indeed, the Argyros-Haydon space XK has an FDD (Mn) with the

property that every skipped blocking of (Mn) spans a reflexive subspace and yet its dual
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is isomorphic to `1 (Theorem 9.1, [AH]). We thank Pavlos Motakis for pointing out the

example.

We now turn to conditional spreading bases. Suppose that (ei) is a normalized spreading

basis for X which is not weakly null. Then the summing functional,

S(
∑
i

aiei) :=
∑
i

ai

is bounded on X. Indeed for some λ 6= 0, f ∈ X∗, and subsequence (in) of N we have that

f(ein) − λ → 0 rapidly. So a perturbation of λ−1f is constantly 1 on the ein ’s. Then it

follows from the spreading property that S is bounded on X.

By renorming we can assume that (ei) is normalized, 1-spreading and a bimonotone basis

for X, and ‖S‖ = 1. This is easily achieved by replacing (ei) by a spreading model of a

subsequence, and then by the renorming |||x||| := max(‖x‖, |S(x)|). With this we also get

that the functional SI(
∑

i aiei) :=
∑

i∈I ai is of norm one for any interval I. Note that the

boundedness of S implies that the summing basis of c0 is dominated by every conditional

spreading sequence.

Theorem 2.3. Let (ei) be a normalized 1-spreading, non weakly null, bimonotone basis for

X.

a) If (xi) is a normalized block basis of (ei) with S(xi) = 0 for all i, then (xi) is

suppression 1-unconditional.

b) Let (di) = (e1, e2 − e1, e3 − e2, . . .). Then (di) is a skipped unconditional basis for

X.

c) (ei) is boundedly complete if and only if c0 6↪→ X.

d) (di) is shrinking if and only if `1 6↪→ X.

e) `1 6↪→ X if and only if X∗ = RS ⊕ [(e∗i )].

f) c0 and `1 do not embed into X if and only if X is quasi-reflexive of order 1.

Proof. For x, y ∈ X which are finitely supported with respect to the basis (ei), we write

x ∼ y if

x =

k∑
i=1

aieni and y =

k∑
i=1

aiemi where n1 < . . . nk, m1 < . . . < mk.

a) Let (xi) be as in a). We now need the following lemma.

Lemma 2.4. For all ε > 0 and i0 ∈ N there exists m ∈ N such that for all f ∈ SX∗ there

exists x̃ ∈ X, x̃ ∼ xi0 and supp(x̃) ⊆ [j,m], j = min supp(xi0), so that |f(x̃)| < ε.
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Proof. Let ε > 0 and i0 ∈ N. Since |f(ei)| ≤ 1 for any f ∈ SX∗ , by the pigeonhole principle

there exists m with the following property:

Let j = min supp(xi0). For all f ∈ SX∗ there exists λ ∈ [−1, 1] and F ⊆ [j,m] with

|F | = k = |supp(xi0)| so that for i ∈ F , |f(ei)− λ| < ε/k.

Place x̃ ≡
∑

i∈F aiei on F so that x̃ ∼ xi0 . Then S(x̃) = S(xi0) = 0 and

|f(x̃)| ≤ |f(x̃− λS(x̃))|+ |λS(x̃)| =
∣∣∣∑
i∈F

ai(f(ei)− λ)
∣∣∣ < ε.

�

Now let x =
∑k

i=1 aixi, ‖x‖ = 1, ε > 0. Let F ⊆ {1, 2, . . . , k}. We will show that

‖
∑

i∈F aixi‖ ≤ 1 + ε. Let ji = min supp(xi) for i ≤ k and choose mi by Lemma 2.4 for

ε/k and ji. Since (ei) is 1-spreading we may assume that j1 < m1 < j2 < m2 < . . .. Let

f ∈ SX∗ with f(
∑

i∈F aixi) = ‖
∑

i∈F aixi‖. For i 6∈ F , i ≤ k, we choose x̃i ∼ xi with

supp(x̃i) ⊆ [ji,mi] so that |f(x̃i)| < ε/k. Then∥∥∥∥∥∑
i∈F

aixi

∥∥∥∥∥ ≤
∣∣∣∣∣∣f
(∑
i∈F

aixi +
∑
i 6∈F

aix̃i

)∣∣∣∣∣∣+

∣∣∣∣∣∣f
(∑
i 6∈F

aix̃
)∣∣∣∣∣∣ ≤ ‖x‖+ ε =1 + ε.

This proves a).

b) To see (di) is a basis for X we need only note that it is basic. This is an easy

calculation that holds for any difference sequence (di) obtained from a normalized basic (ei)

that dominates the summing basis (i.e., S is bounded). Indeed, for any n < m∥∥∥ n∑
i=1

aidi

∥∥∥ =
∥∥∥ n−1∑
i=1

(ai − ai+1)ei + anen

∥∥∥ ≤ ∥∥∥ m∑
i=1

aidi

∥∥∥+ ‖an+1en‖

=
∥∥∥ m∑
i=1

aidi

∥∥∥+
∣∣∣S( m−1∑

i=n+1

(ai − ai+1)ei + amem

)∣∣∣ ≤ 2
∥∥∥ m∑
i=1

aidi

∥∥∥.
That (di) is skipped unconditional follows from a).

c) We need only show that if (ei) is not boundedly complete, then c0 ↪→ X. Suppose that

there exists (ai) ⊆ R so that supn ‖
∑n

i=1 aiei‖ = 1 and
∑∞

i=1 aiei diverges. Choose δ > 0

and a subsequence (ki) of N so that ‖xi‖ > δ where xi =
∑ki+1−1

j=ki
aiei for i ∈ N.

Choose a block sequence (yi) of (ei) so that y2i−1 ∼ xi and y2i ∼ xi for all i. Then (y2i−1)

and (y2i) are each equivalent to (xi) and (y2i−1 − y2i) is unconditional by a). Furthermore

sup
n
‖

n∑
i=1

(y2i−1 − y2i)‖ ≤ 2

and 2 ≥ ‖y2i−1 − y2i‖ ≥ δ for all i. Thus (y2i−1 − y2i) is equivalent to the unit vector basis

of c0.
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d) This follows easily since (di) is skipped unconditional.

e) Suppose `1 does not embed into X. By Rosenthal’s `1 theorem [R] and the fact that

(ei) is spreading, (ei) is weak Cauchy.

Let f ∈ X∗. Then f = w∗ − limn
∑n

i=1 f(ei)e
∗
i , and limi→∞ f(ei) ≡ λ exists. Then

f − λS ∈ [(e∗i )]. Indeed f − λS = w∗ − limn→∞
∑n

i=1 bie
∗
i where limi bi = 0. If the series is

not norm convergent there exists δ > 0, (ni) ∈ [N]ω, and a normalized block basis (xi) of

(ei) so that x1 < en1 < x2 < en2 < . . ., so that (f − λS)xi > δ for all i and bni → 0 rapidly.

In particular, (xi − S(xi)eni) is unconditional and (f − λS)(xi − S(xi)eni) > δ/2 for all i.

Thus (xi − S(xi)eni) is equivalent to the unit vector basis of `1, a contradiction.

f) Let (un) be a skipped block basis of (di), and assume c0 and `1 do not embed into

X. Then (un) is unconditional and shrinking by b) and d) and is also boundedly complete

since X does not contain c0. Thus [(un)] is reflexive and Theorem 2.1 yields the result. �

If X has an unconditional basis and Y ⊆ X has non separable dual then `1 ↪→ Y [BP].

This also holds if X has a spreading basis. In fact, the result holds more generally.

Proposition 2.5. Suppose X has a skipped unconditional basis and let Y ⊆ X with Y ∗

not separable. Then `1 embeds into Y .

Proof. Assume that Y ∗ is not separable and `1 does not embed into Y . By Theorem 3.14

of [AJO] there exists an `+1 weakly null tree (yα)α∈Tω in Y . Here Tω = {(ni)k1 : n1 <

. . . < nk, ni ∈ N, k ∈ N}. (y(α,n))n is weakly null and normalized for all α ∈ {∅} ∪ Tω.

Furthermore, for some c > 0, ‖
∑

i aiyαi‖ ≥ c
∑

i ai for all branches (αi) of Tω and ai ≥ 0.

Using that the tree is weakly null and X has a skipped unconditional basis it is easy to

find a branch (yαi) which is unconditional, hence is equivalent to the unit vector basis of

`1. This is a contradiction. �

Remark 2.6. The same proof also yields that if X is a subspace of a space with skipped

unconditional finite dimensional decomposition and X∗ is non-separable, then `1 embeds

into X.

The next result answers a question asked of us by H. Rosenthal: If X has a spreading

basis, does X contain a complemented subspace with an unconditional basis?

Proposition 2.7. If (ei) is a normalized spreading basis for X then the subspace Y spanned

by the unconditional block basis [(e2n−1 − e2n)] is complemented in X.
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It suffices to prove that the complementary “projection” Q is bounded where

Q(
∑
i

aiei) =
∑
i

a2i−1 + a2i

2
(e2i−1 + e2i).

This is a consequence of the following more general result which is well known if the basis

is subsymmetric.

Theorem 2.8. Let (ei) be a normalized bimonotone 1-spreading basis for X. Let (σj)
∞
j=1

be a partition of N into successive intervals, σ1 < σ2 < . . ., with |σj | = nj for j ∈ N. Then

the averaging operator

Q
(∑

i

aiei

)
=
∞∑
j=1

((∑
i∈σj

ai
)
/nj

)(∑
i∈σj

ei

)
is a bounded projection on X with ‖Q‖ ≤ 3.

It is important to note that, unlike the subsymmetric case, there are no gaps allowed

between blocks in this averaging operator.

Proof. It suffices to prove that for all k, ‖Qx‖ ≤ 3‖x‖ if supp(x) ⊆
⋃k
i=1 σi. Let k ∈ N, x =∑max(σk)

j=1 ajej . Let M be the least common multiple of (n1, n2, . . . , nk) and set mj = M/nj

for j ≤ k.

We will construct vectors (yi)
2M
i=1 so that 1

2M

∑2M
j=1 yj = x̄ +

∑M
j=1 zj where yi ∼ x,

2x̄ ∼ Qx and zj ∼ 1
2M x for j ≤M . It follows that

‖Qx‖ = 2‖x̄‖ ≤ 2
(
‖x‖+M

1

2M
‖x‖
)

=3‖x‖.

To begin we spread x to obtain y1 so that the coordinates of y1 looks like this

y1 = (a1, a2, . . . , an1 , 0, . . . , 0, an1+1, . . . , an1+n2 , 0, . . . , 0, an1+n2+1, . . .).

For each 1 ≤ j ≤ k− 1, we insert 2nj − 1 zeros between the blocks of x corresponding to

σj and σj+1, and let γj be the index set for the coordinates of the inserted block of zeros.

The vectors y2, . . . , y2M will be spreads of y1. The position of the first block (a1, . . . , an1)

is preserved for y2, . . . , ym1 . This block is then shifted one unit right for ym1+1, . . . , y2m1 .

Then another unit to the right for y2m1+1, . . . , y3m1 and so on n1 times until reaching

y2M = y2n1m1 . The same scheme is followed for the second block (an+1, . . . , an1+n2) and

the subsequent blocks. Thus the second block is preserved for y2, . . . , ym2 and then shifted

once right for ym2+1, . . . , y2m2 .

When we average the yj ’s, x̄ will be the average of the vectors y1, ..., y2M restricted to

the coordinates given by the union over 1 ≤ j ≤ k of the first nj coordinates of γj .
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We give a simple example in the diagram below explaining this averaging procedure in

the case k = 2, n1 = 2, n2 = 3 and so M = 6, m1 = 3, and m2 = 2.

a1 a2 0 0 0 a3 a4 a5 0 0 0 0 0
a1 a2 0 0 0 a3 a4 a5 0 0 0 0 0
a1 a2 0 0 0 0 a3 a4 a5 0 0 0 0
0 a1 a2 0 0 0 a3 a4 a5 0 0 0 0
0 a1 a2 0 0 0 0 a3 a4 a5 0 0 0
0 a1 a2 0 0 0 0 a3 a4 a5 0 0 0
0 0 a1 a2 0 0 0 0 a3 a4 a5 0 0
0 0 a1 a2 0 0 0 0 a3 a4 a5 0 0
0 0 a1 a2 0 0 0 0 0 a3 a4 a5 0
0 0 0 a1 a2 0 0 0 0 a3 a4 a5 0
0 0 0 a1 a2 0 0 0 0 0 a3 a4 a5

0 0 0 a1 a2 0 0 0 0 0 a3 a4 a5

The vector x̄ is the average of y1, ..., y2M restricted to the coordinates given by bold type.

The remaining coefficients are easily partitioned into M spreads of x. �

Proposition 2.9. Let (ei) be a normalized conditional spreading basis for X. Let D =

[(d2n)], where (dn) is the difference basis. Then X ' D⊕Y where Y = [(e1 +e2, e3 +e4, . . .)]

is isomorphic to X.

Proof. We may assume (ei) is 1-spreading. By Proposition 2.7 and Theorem 2.8 it suffices

to prove that (e2n−1 + e2n)∞n=1 dominates (en). We will prove that if x =
∑n

i=1 aiei,

‖x‖ = 1, then ‖
∑n

i=1 ai(e2i−1 + e2i)‖ ≥ 2/3. Write x1 =
∑n

i=1 aie3i−1, x2 =
∑n

i=1 aie3i−2

and x3 =
∑n

i=1 aie3i. Assume ‖x1 + x2‖ = c. Let f ∈ SX∗ , 1 = f(x1). Then f(x1 + x2) ≤ c
so f(x2) ≤ c− 1. Also using ‖x1 + x3‖ = c, f(x3) ≤ c− 1. Thus c ≥ −f(x2 + x3) ≥ 2− 2c

and so c ≥ 2/3. Thus, ‖
∑n

i=1 ai(e2i−1 + e2i)‖ = ‖
∑n

i=1 ai(e3i−2 + e3i−1)‖ = c ≥ 2/3. Note

that the argument can easily be generalized for all ε > 0 to get c ≥ 1− ε. �

It has been shown that spaces X whose dual are isomorphic to `1 are quite plentiful and

need not contain c0 [BD]. Moreover, any Y with Y ∗ separable embeds into such a space

[FOS]. But if X has a spreading basis, X∗ is separable and `1 ↪→ X∗, then c0 ↪→ X. This

holds more generally if X∗ is separable and X∗∗ is not separable, assuming a spreading

basis, by Theorem 2.3. More can be said if X∗ is isomorphic to `1.

Theorem 2.10. Let (ei) be a normalized spreading basis for X and assume X∗ is isomor-

phic to `1. Then (ei) is equivalent to either the unit vector basis of c0 or the summing

basis.
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Proof. If (ei) is weakly null then, it is unconditional. It follows that (e∗i ) is subsymmetric.

Since X∗ ' `1 some subsequence of (e∗i ) is equivalent to the unit vector basis of `1, so (e∗i )

is such and so (ei) is equivalent to the unit vector basis of c0.

If (ei) is not weakly null, then we consider the difference basis (di) of X. To show (ei) is

equivalent to the summing basis it suffices to show that (di) is equivalent to the unit vector

basis of c0. To do this, it suffices, by the triangle inequality, to show (d2i) is equivalent to the

unit vector basis of c0 since (d2i) is equivalent to (d2i−1). Now D = [(d2n)] is complemented

in X and (d2n) is unconditional and shrinking. So (d∗2n|D) is an unconditional basis for D∗

which is isomorphic to `1, since it is complemented in X∗ ' `1. Thus (d∗2n|D) is equivalent

to the unit vector basis of `1. These are due to the facts that `1 is prime and has unique

unconditional basis. Hence (d2n) is equivalent to the unit vector basis of c0. �

3. Remarks on conditional spreading models

Recall that a normalized basic sequence (ei) is a spreading model of a sequence (xi) if

for some εn ↓ 0, for all n, (ai)
n
1 ⊆ [−1, 1] positive integers n ≤ k1 < . . . < kn

(3.1)

∣∣∣∣∣∣
∥∥∥ n∑
j=1

ajxkj

∥∥∥− ∥∥∥ n∑
i=1

aiei

∥∥∥
∣∣∣∣∣∣ ≤ εn.

In this case (ei) is 1-spreading, and if (xi) is weakly null, then (ei) is suppression 1-

unconditional. We denote by SPw(X) the set of all spreading models of X generated by

weakly null sequences. If (yi) is normalized basic then, via Ramsey theory, some subsequence

(xi) of (yi) generates a spreading model (ei) as in (3.1) above. If (yi) is normalized but

does not have a basic subsequence then any basic spreading model admitted by (yi) must be

equivalent to the unit vector basis of `1. Indeed, by Rosenthal’s `1 theorem we may assume

(yi) is weak Cauchy. Every non-trivial weak Cauchy sequence has a basic subsequence

(see the proof of Proposition 2.2, [Ro]). Thus a subsequence (xi) of (yi) weakly converges

to a nonzero element x0, and (xi−x0) generates an unconditional spreading model (ui). So

(ei) is equivalent to (x0 + ui) in 〈x0〉⊕ [(ui)]. Since (ei) is basic, (ui) is not weakly null and

therefore equivalent to the unit vector basis of `1, and so is (ei).

One of the questions of interest about spreading models is whether there exists a “small”

space that is universal for all (or a large class of) spreading models. Recall that the space

C(ωω) is universal for all unconditional spreading models, that is, every subsymmetric

basic sequence is a spreading model of C(ωω) [O]. In [AM] a remarkable example of a

reflexive space is constructed so that every infinite dimensional subspace of it is universal
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for all unconditional spreading models. For the case of conditional spreading models, S.

A. Argyros raised the following which partly motivated our study of conditional spreading

sequences above.

Problem 3.1. Let (ei) be a conditional normalized spreading sequence. Does there exists

a quasi-reflexive of order 1 space X with a normalized basis (xi) which generates (ei) as a

spreading model?

We show that the answer is affirmative for the summing basis of c0. For a given basis

(ei), recall the space J(ei). For x ∈ J(ei), the norm is given by

‖x‖ = sup
{∥∥∥ k∑

i=1

si(x)epi

∥∥∥ : s1 < s2 < . . . < sk are intervals in N, min si = pi

}
,

where si(x) =
∑

j∈si aj , si = [pi, qi), and x = (aj).

Proposition 3.2. Let (ei) be the unit vector basis of the dual Tsirelson space T ∗. Then

the space J(ei) is quasi-reflexive of order 1 and the spreading model generated by its natural

basis is equivalent to the summing basis of c0.

Proof. In [BHO] it is shown that if (ei) is a basis of a reflexive space, then J(ei) is quasi-

reflexive of order 1. Thus the first assertion follows since T ∗ is reflexive.

Also it is easy to see that any subsequence of the basis (ui) of J(ei) generates a spreading

model equivalent to the summing basis (si). Indeed, to estimate the norm of a vector

x =
∑k

j=1 ajuij where k ≤ i1 < . . . < ik note that for an arbitrary s1 < . . . < sk we have

∥∥∥ k∑
j=1

sj(x)eij

∥∥∥
T ∗
≤ 2 max

j
|
∑
i∈sj

ai|

and the latter expression is at most twice the summing norm of x. The reverse inequality

is trivial (consider intervals s = [l, ik], k ≤ l ≤ ik). �

In a follow-up work [AMS] the constructions similar to the above are studied in more

detail and, in particular, Problem 3.1 is solved affirmatively.

4. Spreading and asymptotic models

Our first result of this section is a strengthening of the c0-part of the following theorem

of Odell and Schlumprecht [OS]. If X has a basis (xi) so that every spreading model of

a normalized block basis of (xi) is 1-equivalent to the unit vector basis of c0 (respectively,

`1), then X contains an isomorphic copy of c0 (respectively, `1). Here we show that it is
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sufficient to restrict the assumption to those spreading models generated by weakly null

block bases.

Theorem 4.1. Let (xi) be a normalized weakly null basis for X. Assume that `1 does

not embed into X and whenever (yi) is a normalized weakly null block basis of (xi) with

spreading model (ei), then ‖e1 − e2‖ = 1. Then some subsequence of (xi) is equivalent to

the unit vector basis of c0.

Remark. The hypothesis yields that every spreading model (ei) generated by a weakly

null normalized sequence (yi) is 1-equivalent to the unit vector basis of c0. Indeed, we

may assume (yi) is a weakly null normalized block basis of (xi). Then
(
y2n−1−y2n
‖y2n−1−y2n ‖

)
is a

weakly null block basis generating the normalized spreading model (e2n−1 − e2n) and so

‖e1 − e2 − e3 + e4‖ = 1. By iteration of this argument, 1-spreading and the suppression

1-unconditionality of (ei), ∥∥ n∑
i=1

±ei
∥∥ = 1 for all ± 1 and all n.

This implies (ei) is 1-equivalent to the unit vector basis of c0.

As it was pointed out in the introduction this immediately implies the following well

known theorem of Elton and Odell [EO].

Theorem 4.2 (Elton-Odell). Let X be an infinite dimensional Banach space. Then there

exists λ > 1 and an infinite sequence (xi) ⊂ SX such that ‖xi − xj‖ ≥ λ for all i 6= j.

For the proof of Theorem 4.1 we need to recall some terminology. A collection F ⊆ [N]<ω

is called thin if there do not exist F,G ∈ F with F being a proper initial segment of G. F
is large in M ∈ [N]ω if for all N ∈ [M ]ω there exists an initial segment F of N with F ∈ F .

For a sequence (xi) ⊆ X and E ∈ [N]<ω we set xE =
∑

i∈E xi. For a thin F ⊆ [N]<ω we let

FI = {G∈ [N]<ω : G is an initial segment of some F ∈ F}.

Lemma 4.3. Let X and (xi) be as in the hypothesis of Theorem 4.1. Let F be a collection

of finite subsets of N satisfying

(4.1) sup{‖xE‖ : E ∈ F} <∞.

Then there exists M ∈ [N]ω so that for all E1 < E2 < . . . with Ei ∈ F ∩ [M ]<ω for all i ∈ N,

the sequence (xEi) is weakly null.
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Proof. By Elton’s near unconditionality theorem [E], there exists M ⊆ N such that for some

C <∞ the subsequence (xi)i∈M satisfies for all E ⊆ F ∈ [M ]<ω,

(4.2)
∥∥∑
i∈E

δixi
∥∥ ≤ C∥∥∑

i∈F
δixi

∥∥ for all choices of signs, δi = ±1.

Suppose that for some E1 < E2 < . . ., Ei ∈ F with Ei ⊆ M for all i, the sequence

(xEi) is not weakly null. Then after passing to a subsequence, there exists ε > 0 and

f ∈ BX∗ so that f(xEj ) > ε for all j ∈ N. Since X does not contain `1, by Rosenthal’s `1

theorem and passing to a further subsequence, we may assume that (xEj ) is weak Cauchy.

Let zj = xE2j−1 − xE2j for j ∈ N. Then (zj) is weakly null and moreover by (4.2)

nε ≤
∥∥∑
j∈G

xE2j−1

∥∥ ≤ C∥∥∑
j∈G

zj
∥∥

for all |G| = n, n ∈ N. Thus (zj/‖zj‖)j cannot have a c0 spreading model since supj ‖zj‖ <
∞ by the assumption (4.1). �

Lemma 4.4. Let X and (xi) be as in the hypothesis of Theorem 4.1. Let F be a thin

collection of finite subsets of N which is large in N. Assume that (xEi) is weakly null for all

E1 < E2 < · · · in F and

(4.3) lim sup
n
{‖xE‖ : E ∈ F , n ≤ E} = 1.

Then there exists N = (ni) ∈ [N]ω so that G, defined by,

G =
{ k⋃
i=1

Ei : k ∈ N, nk = min(E1), E1 < · · · < Ek, Ei ∈ F ∩ [N ]<ω for i ≤ k
}

is thin and large in N and furthermore G satisfies ( 4.3) (when G replaces F).

Proof. First we note that by passing to a subsequence, using (xi) is normalized and weakly

null, we may assume that

(4.4) lim inf
n→∞

{‖xE‖ : n ≤ E ∈ [N]<ω} ≥ 1.

Indeed, for each j ∈ N we may choose fj ∈ X∗ with ‖fj‖ = 1 such that fj(xj) = ‖xj‖ = 1.

Fix δn ↓ 0 and after passing to a subsequence we may assume that fn(xj) < δn2−j for each

n < j. Thus, 1− δn < fminE(xE) ≤ ‖xE‖, for all n ≤ E and (4.4) follows.

Let εk ↓ 0 and set

Ak =
{
M ∈ [N]ω : if E1 < · · · < Ek, Ei ∈ F for i ≤ k,

E =

k⋃
i=1

Ei is an initial segment of M, then ‖xE‖ ≤ 1 + εk

}
.
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Note that as F is thin and large in N, for each M ∈ [N]ω there exists unique E1 < · · · < Ek

with Ei ∈ F for 1 ≤ i ≤ k such that ∪ki=1Ei is an initial segment of M . Thus, whether or

not a sequence M ∈ [N]ω is contained in Ak depends entirely on a unique initial segment

of M . This makes Ak ⊂ [N]ω open in the product topology. Open sets are Ramsey, so we

can find subsequences of N, M1 ⊃M2 ⊃ · · · , so that either [Mk]
ω ⊆ Ak or [Mk]

ω ∩ Ak = ∅
for each k.

By the 1-equivalent to c0 spreading model hypothesis we must always have [Mk]
ω ⊆ Ak.

Let N = (ni) be a diagonal sequence, (ni)
∞
i=k ∈ Mk for all k. Define G as in the statement

of the lemma with respect to N . �

Proof of Theorem 4.1. We may assume, using [E] as in the proof of Lemma 4.3, that for

some C <∞,

(4.5) ‖xE‖ ≤ C‖xF ‖ for all E ⊆ F ∈ [N]<ω.

We will show that for α < ω1 there exists Nα = (nαi )i ∈ [N]ω and Gα ⊆ [Nα]<ω so that

Gα is thin and large in Nα. Moreover, GIα has Cantor-Bendixson index CB(GIα) ≥ ωα and

(4.6) sup{‖xE‖ : E ∈ Gα, nαk ≤ E} ≤ 1 + εk

where εk ↓ 0 is fixed. By (4.5) we have that

(4.7) sup{‖xE‖ : E ∈ GIα, nαk ≤ E} ≤ C(1 + εk).

Recall that if K is a countable set then its Cantor-Bendixson index will be a countable

ordinal. Thus, the Cantor-Bendixson index of ∪α<ω1G
I
α is uncountable and it follows that

for some N = (ni) ∈ [N]ω, 1N is in the pointwise closure of

{1E : ‖xE‖ ≤ 2C, E ∈ [N]<ω} in {0, 1}N.

Thus supk ‖
∑k

i=1 xni‖ < ∞ and by (4.5) we obtain that (xni) is equivalent to the unit

vector basis of c0.

To begin we use Lemma 4.4 applied to {{j} : j ∈ N} to obtain N1 = (n1
i ) and G1 = {E :

n1
k = minE, |E| = k, E ⊆ N1} satisfying (4.6), and note that CB(GI1) = ω. Assume Nα

and Gα are chosen to satisfy the given conditions. Choose Ñα+1 ⊆ Nα by Lemma 4.3. Then

apply Lemma 4.4 to Ñα+1 and Gα to obtain Nα+1 and Gα+1. By the definition of Gα+1,

CB(GIα+1) ≥ ωα+1.

If α is a limit ordinal, choose βn ↑ α, and let Ñα be a diagonal sequence of (Nβn) so that

(ñαi )∞i=k ⊆ Nβk and (4.6) holds. Let G̃α = {E ⊆ Ñα : E ⊆ Gβn for some n}. Apply Lemmas

4.3 and 4.4 as above. �
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Recall that the n-dimensional asymptotic structure of X (with respect to a fixed filter

cof(X) of finite co-dimensional subspaces of X) is the collection {X}n of normalized basic

sequences (ei)
n
1 satisfying the following. For all ε > 0 and all X1 ∈ cof(X) there exists

x1 ∈ SX1 such that for all X2 ∈ cof(X) there exists x2 ∈ SX2 so on so that for all Xn ∈
cof(X) there exists xn ∈ SXn so that (xi)

n
1 is (1 + ε)-equivalent to (ei)

n
1 [MMT]. X is

asymptotic-c0 if for some K <∞ and all n, (ei)
n
1 ∈ {X}n implies that (ei)

n
1 is K-equivalent

to the unit vector basis of `n∞. In this case X∗ must be separable and the condition can

be described in terms of weakly null trees. Namely, X is asymptotic-c0 (assuming X∗ is

separable) if and only if for some K < ∞ for all n ∈ N and all normalized weakly null

trees (xα)α∈Tn in X, some branch is K-equivalent to the unit vector basis of `n∞ where

Tn = {(k1, k2, . . . , kn) : 1 ≤ k1 < · · · < kn}.
The following question is open.

Problem 4.5. Suppose that `1 does not embed into X and every spreading model generated

by weakly null normalized sequences in X is equivalent to the unit vector basis of c0. Does

X contain an asymptotic-c0 subspace? Does X contain a subspace Y with Y ∗ separable?

Note that the space JH constructed by Hagler [H] has non separable dual, does not

contain `1 and every weakly null normalized sequence has a subsequence equivalent to the

unit vector basis of c0. So if the problem has affirmative answer it is necessary to pass to a

subspace. We will prove a weaker theorem.

Theorem 4.6. Suppose that a Banach space X does not contain an isomorphic copy of `1

and every asymptotic model (ei) generated by weakly null arrays in X is equivalent to the

unit vector basis of c0. Then

i) X∗ is separable and thus X embeds into a space Y with a shrinking basis (yi).

ii) X is asymptotic-c0 (with respect to the basis (yi)).

Recall that (ei) is an asymptotic model of X, denoted by (ei) ∈ AMw(X), generated by

a normalized weakly null array (xij)i,j∈N if (xij)
∞
j=1 is weakly null for all i ∈ N, and for some

εn ↓ 0, all n and all (ai)
n
1 ⊆ [−1, 1] and n ≤ k1 < k2 < . . . < kn

(4.8)

∣∣∣∣∣∥∥∥
n∑
i=1

aix
i
ki

∥∥∥− ∥∥∥ n∑
i=1

aiei

∥∥∥∣∣∣∣∣ ≤ εn.
Asymptotic models were introduced in [HO]. If every (ei) ∈ AMw(X) is equivalent to

the unit vector basis of c0, then there exists K < ∞ so that every (ei) ∈ AMw(X) is

K-equivalent to the unit vector basis of c0 [HO].
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The hypothesis of the theorem can be contrasted with being asymptotic-c0 as follows.

The asymptotic model condition implies that for some K, and every n ∈ N and normalized

weakly null tree (xα)α∈Tn of a certain type, some branch is K-equivalent to the unit vector

basis of `n∞. The ”certain type” condition is: there exist n normalized weakly null sequences

(xij)
∞
j=1, 1 ≤ i ≤ n so that if α = (`1, . . . , `k) then xk`k = xα. In short, the successor sequences

to each |β| = k − 1 are all the same, depending only on k, for all 1 ≤ k ≤ n. Theorem

4.6 states that if these specific normalized weakly null trees in X each have a branch K-

equivalent to the unit vector basis of `n∞ then all normalized weakly null trees (xα)α∈Tn in

X do as well.

Proof of Theorem. i) We first show that X∗ is separable. Assume not. By a result of Stegall

[S] for all ε > 0 there exists ∆ ⊆ SX∗ , ∆ is w∗-homeomorphic to the Cantor set, and a Haar

like system (xn,i) ⊆ X. More precisely, there exist a sequence (An,i) of subsets of ∆ for n =

0, 1, 2, . . . and i = 0, 1, . . . , 2n − 1 such that A0,0 = ∆ and each An,i is the union of disjoint,

non-empty, clopen subsets An+1,2i and An+1,2i+1 with limn→∞ sup0≤i<2n diam(An,i) = 0,

and Haar functions hn,i ⊆ C(∆) (relative to (An,i)) so that

h2n+i := 1An+1,2i − 1An+1,2i+1 , n = 0, 1, . . . , i = 0, 1, . . . , 2n − 1.

Finally, (xn,i) ⊆ X is a Haar like system (relative to (An,i)) if, indexing above Haar functions

as h2n+i = hn,i, we have ‖xn,i‖ ≤ 1 + ε for all (n, i) so that

∞∑
n=0

2n−1∑
i=0

‖xn,i|∆ − hn,i‖C(∆) < ε.

For simplicity in what follows we will assume xn,i|∆ = hn,i and ignore the tiny perturba-

tions, and we will refer to the sets An,i’s as intervals. We will construct a Rademacher type

system (rn) from the xn,i’s and conclude that `1 ↪→ X to get a contradiction.

Begin with r1 ≡ x0,0 and suppose r1, . . . , rn ∈ span(xk,i) have been constructed so that

for each choice of signs (εi)
n
1 there is an interval I in ∆ on which for i ≤ n, ri|I = εi. Fix such

an I and consider the subsequence (xk,l) that is ‘supported’ on I, that is, suppxk,l|∆ ⊆ I.

A further subsequence has pairwise disjoint support and a further subsequence of that is

weak Cauchy. Thus the corresponding difference sequence is weakly null. The difference

sequence has norm in [1, 2] and take values −1, 0, 1 on I.

Now consider that this has been done for all 2n such I’s. Label the sequences as (dij)
∞
j=1

for i ≤ 2n. By the asymptotic model hypothesis (applied to the weakly null array (dij)
∞
j=1,

i ≤ 2n) we can form rn+1 =
∑2n

i=1 d
i
ji

with 1 ≤ ‖rn+1‖ ≤ 2K.
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If (an)Nn=1 ⊆ R we choose an interval I ⊆ ∆ such that rn|I = sign(an) for all 1 ≤ n ≤ N .

Thus, ‖
∑

n anrn‖ ≥ ‖
∑

n anrn|I‖C(I)| =
∑

n |an|. Thus (rn) is a seminormalized sequence

which dominates the unit vector basis of `1. This contradicts that `1 does not embed into

X and hence X∗ must be separable. By Zippin’s theorem X embeds into a space Y with a

shrinking basis (yi).

ii) We proceed to show that X is an asymptotic-c0 space with respect to the basis (yi).

We need to prove that there exists a constant C such that for all n every asymptotic space

(ei)
n
1 ∈ {X}n is C-equivalent to the unit vector basis of `n∞. If (ei)

n
1 ∈ {X}n then also

(εiei)
n
1 ∈ {X}n for all sequence of signs (εi)

n
1 . Therefore, it is sufficient to show that there

exists C such that for all n ∈ N and for every asymptotic space (ei)
n
1 ∈ {X}n we have

‖
∑n

i=1 ei‖ ≤ C.

Suppose this is not the case. Then for all C ≥ 1 there exists n and a normalized

asymptotic tree (i.e., countably branching block tree) (xα)α∈Tn in X so that for every

branch β = (xi)
n
i=1 of (xα)α∈Tn there exists fβ ∈ SX∗ with fβ(

∑n
i=1 xi) > C.

We will construct weakly null seminormalized sequences (y1
i )i≥1, (y

2
i )i≥2, . . . , (y

n
i )i≥n from

the linear combinations of carefully chosen nodes of (xα)α∈Tn so that, after passing to

subsequences in each and relabeling, the array {yki : 1 ≤ k ≤ n, i ≥ 1} satisfies ‖yki ‖ ≤ K

for all 1 ≤ k ≤ n, i ≥ 1 and ‖
∑n

k=1 y
k
ik
‖ > C for all i1 < · · · < in. This will contradict the

assumption that all asymptotic models generated by weakly null arrays are K-equivalent

to the unit vector basis of c0.

We first describe a general procedure of extracting an array of weakly null sequences from

a tree. The actual array will be obtained by applying this procedure to a carefully pruned

tree (using our assumptions) that we describe later.

Extracting arrays from trees. The main idea of the construction is that each yki is

chosen to be a linear combination of nodes of (xα)α∈Tn from the kth level so that for

every i1 < · · · < in the union of the supports (with respect to the tree Tn) of y1
i1
, . . . , ynin

contains a (unique) full branch of the tree Tn.

Let (xα)α∈Tn be the tree above. For (i1, . . . , ik) ∈ Tn we label the node xk(i1, . . . , ik) :=

x(i1,...,ik). The superscript (which denotes the kth level in the tree) is redundant but we

keep it for the sake of clarity.

We will construct the desired n-array so that all rows (yki )i≥k and all diagonal sequences

(ykik)nk=1, i1 < . . . < in are blocks sequences. We will often prune the tree (xα)α∈Tn by

deleting nodes and then relabel the remaining nodes. The pruned tree will always be a

full (sub)-tree. Moreover, to ease the notation for later constructions we will relabel the
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full subtree to match the indices so that the resulting array will have the property that

for every diagonal sequence (ykik)nk=1, i1 < . . . < in the corresponding unique full branch is

(x1(i1), x2(i1, i2), . . . , xn(i1, i2, . . . , in)).

The array is to be labelled as follows and constructed in diagonal order.

y1
1 y1

2 y1
3 y1

4 y1
5 · · ·

y2
2 y2

3 y2
4 y2

5 · · ·
. . .

. . .
. . .

ynn ynn+1 · · ·

Let y1
i = x1(i) for all i ≥ 1. So (y1

i )i is the sequence of initial nodes of (xα)α∈Tn . For the

first diagonal sequence (y1
1, . . . , y

n
n) take the leftmost branch of (xα)α∈Tn , that is,

(4.9) y1
1 = x1(1), y2

2 = x2(1, 2), . . . , ynn = xn(1, . . . , n).

The node y2
3 will be a sum of two successors to the nodes x1(1) and x1(2) that comprise

y1
1 and y1

2, respectively. To do this we pick i1 > 2 and i2 > 2 large enough so that x2(1, i1)

and x2(2, i2) are supported after x1(2) (and hence after x1(1)). Delete the nodes x2(1, j)

for 2 < j < i1 and the nodes x2(2, j) for 3 ≤ j < i2 and relabel the remaining sequences so

that the chosen nodes becomes x2(1, i1) = x2(1, 3) and x2(2, i2) = x2(2, 3). Put

(4.10) y2
3 = x2(1, 3) + x2(2, 3).

We proceed in similar fashion so that each vector ykj of the kth row (j > k > 1) is defined

as a sum of nodes from the kth level of the tree (xα)α∈Tn and which are successors to the

nodes that comprise the previously chosen vectors yk−1
k−1, y

k−1
k , ..., yk−1

j−1 . We pick the nodes

so that the block conditions are satisfied and relabel the tree after deleting finitely many

nodes. Thus y3
4 is a sum of nodes successor to the nodes of y2

2 and y2
3 and after relabeling

the nodes it becomes

(4.11) y3
4 = x3(1, 2, 4) + x3(1, 3, 4) + x3(2, 3, 4).

In general, suppose that yk−1
j for k − 1 ≤ j < i and k ≤ n are defined. Let

yk−1
j = xk−1(t̄1) + xk−1(t̄2) + . . . =

∑
m∈Ak−1

j

xk−1(t̄m) for some Ak−1
j ⊂ N

be the enumeration of the (finitely many) nodes comprising yk−1
j ’s in the order they appear

and where each t̄s is a k − 1-tuple with maximal entry j.
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We denote concatenation by (a1, . . . , an) a an+1 = (a1, . . . , an, an+1). By passing to

subsequences and relabeling the sequences of successor nodes

(xk(t̄1a l))l≥j , (x
k(t̄2a l))l>≥j , (x

k(t̄3a l))l≥j , . . .

we may assume each of these vectors are supported after the previously chosen ones. We

define yki as a sum of successors to the nodes comprising yk−1
k−1, . . . , y

k−1
i−1 . That is, we put

(4.12) yki =
i−1∑

j=k−1

∑
m∈Ak−1

j

xk(t̄ma i).

Note that j is the maximal entry of t̄m ∈ Ak−1
j and hence xk(t̄ma i) is a successor of xk(t̄m)

as j < i.

This completes the construction of the array. It follows that the support of any diagonal

sequence (ykik)nk=1, i1 < . . . < in contains the unique full branch (x1(i1), x2(i1, i2), . . . , xn(i1, i2, . . . , in))

as desired.

Pruning the tree. For notational convenience we will denote branches

β = (x1(i1), x2(i1, i2), . . . , xn(i1, i2, . . . , in))

of the tree by β = (i1, i2, . . . , in). From the construction the support of (the sum of) each

sequence y1
i1
, . . . , ynin consists of the unique full branch β = (i1, i2, . . . , in) and other off-

branch nodes whose numbers add up quickly as in gets large. By our assumption there is

a branch functional fβ so that

(4.13) fβ

( n∑
k=1

xk(i1, . . . , ik)
)
> C.

Our goal here is to show that for all ε > 0 we can prune the tree so that the array (with

respect to the pruned tree) satisfies

(4.14) ‖yki ‖ ≤ K+ε, for all 1 ≤ k ≤ n, i ≥ k,

and

(4.15) fβ

( n∑
k=1

ykik

)
≥ C − ε.

Let ε > 0. Fix (εk)
n
k=1 so that

∑n
k=1 εk < ε. Let (xα)α∈Tn be a full subtree satisfying

block conditions described in the above construction. That is, every sequence of successor

nodes of (xα)α∈Tn is a block basis and whenever yki is defined as in (4.25) the sequences

(y1
i1
, . . . , ynin) are blocks as well.
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As before we will proceed in diagonal order (of the array). Let y1
i = x1(i) for all i ≥ 1.

For the first diagonal sequence (y1
1, . . . , y

n
n) again we take the leftmost branch of (xα)α∈Tn ,

that is,

(4.16) y1
1 = x1(1), y2

2 = x2(1, 2), . . . , ynn = xn(1, . . . , n).

The condition (4.14) is clearly satisfied since the tree is normalized and the condition (4.15)

follows from the assumption (4.13).

We wish to define y2
3 as in (4.10). This will require two steps. First consider the sequences

of level 2 successor nodes

(x2(1, l))l≥3, (x
2(2, l))l≥3.

By our main assumption, the array formed by these sequences can be refined to generate

an asymptotic model K-equivalent to the unit vector basis of `2∞. Thus by passing to

subsequences, relabeling and ignoring tiny perturbations we can assume that for all 3 ≤
l1 < l2,

(4.17) ‖x2(1, l1) + x2(2, l2)‖ ≤ K.

This will ensure that whenever y2
3 is defined as in (4.10) the condition (4.14) is satisfied.

The second refinement towards ensuring (4.15) is somewhat more complicated.

Consider again the sequences of successor nodes (x2(1, l))l≥3 and (x2(2, l))l≥3. By the

main assumption each of these sequences generate spreading models which are K-equivalent

to the unit vector basis of c0. Fix N ≥ 1 +K2/ε2
1 + 2K/ε1. By passing to subsequences and

relabeling we can assume that both (x2(1, l))N+3
l=3 and (x2(2, l))N+3

l=3 are K-equivalent to the

unit vector basis of `N∞. For every branch β = (i1, . . . , in) of Tn we let f(i1,i2,...,in) denote

the corresponding branch functional satisfying (4.13). For each 3 ≤ l ≤ N + 3, f(1,l)aj̄ and

f(2,l)aj̄ are the branch functionals for branches extending (1, l) and (2, l) respectively, where

j̄ is an (n−2)-tuple. We stabilize the values of these functionals on the chosen nodes. That

is, by passing to subsequences and ignoring tiny perturbations we can assume that for all

j̄, j̄′ we have

f(1,l)aj̄(x
2(2, t)) = f(1,l)aj̄′(x

2(2, t)) and f(2,l)aj̄(x
2(1, t)) = f(2,l)aj̄′(x

2(1, t)),

for all 3 ≤ l, t ≤ N + 3.

Claim. There exist 3 ≤ l1, l2 ≤ N + 3 so that for all j̄

(4.18) |f(1,l1)aj̄(x
2(2, l2))| < ε1 and |f(2,l2)aj̄(x

2(1, l1))| < ε1.

For any functional f of norm at most 1 and sequence (xt)
n
t=1 which is K-equivalent to

the unit vector basis of `n∞ there is a sequence of signs δt = ±1 so that
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(4.19)
n∑
t=1

|f(xt)| =

∣∣∣∣∣f(
n∑
t=1

δtxt

)∣∣∣∣∣ ≤ K.
It follows that the cardinality |{t : |f(xt)| ≥ ε1}| ≤ K/ε1. Thus for each l and j̄,

|Al| :=
∣∣∣{t : |f(1,l)aj̄(x

2(2, t))| < ε1}
∣∣∣ ≥ N −K/ε1.

Then for any B ⊂ {3, . . . , N + 3} with K/ε1 + 1 ≤ |B| < K/ε1 + 2 we have∣∣∣ ⋂
l∈B

Al

∣∣∣ ≥ 1.

Indeed, N − |B|K/ε1 ≥ N −K2/ε2
1− 2K/ε1 ≥ 1. Fix such a subset B and let l2 ∈

⋂
l∈B Al.

Then |f(1,l)aj̄(x
2(2, l2))| < ε1 for all l ∈ B. Now consider the functionals f(2,l2)aj̄ . Since

(x2(1, l))l∈B is K-equivalent to the unit vector basis of `
|B|
∞ and |B| ≥ K/ε1 +1, by a similar

argument as above, there is l1 ∈ B such that |f(2,l2)aj̄(x
2(1, l1))| < ε1, proving the claim.

Now we relabel the nodes as x2(1, l1) = x2(1, 3) and x2(2, l2) = x2(2, 3) (by deleting

finitely many nodes) and put

(4.20) y2
3 = x2(1, 3) + x2(2, 3).

At this stage the pruned tree has the following gap property of the branch functionals

f(1,3)āj and f(2,3)āj .

f(1,3)aj̄

(
(y1

1 + y2
3)− (x1(1) + x2(1, 3))

)
= f(1,3)aj̄

(
x2(2, 3)

)
< ε1,

f(2,3)aj̄

(
(y1

2 + y2
3)− (x1(2) + x2(2, 3))

)
= f(2,3)aj̄

(
x2(1, 3)

)
< ε1

We have that x1(1) and x2(1, 3) are the nodes on the branch of (1, 3)a j̄. Thus the first

above inequality states that the branch functional f(1,3)aj̄ is small on the off branch part of

y1
1 + y2

3, and the second above inequality states that the branch functional f(2,3)aj̄ is small

on the off branch part of y1
2 + y2

3. This will be important for us as the branch functionals

fβ are defined to be large on their branch. We will eventually be able to obtain (4.15) by

showing that fβ is greater than C on the branch part of
∑n

k=1 y
k
ik

and fβ is smaller than ε

on the off branch part of
∑n

k=1 y
k
ik

where β = (i1, . . . , in).

For the sake of clarity we also show how to define y3
4 as in (4.11) before proceeding with

the inductive step. The array formed by the sequences of level 3 successor nodes

(x3(1, 2, l))l≥4, (x
3(1, 3, l))l≥4, (x

3(2, 3, l))l≥4

can be refined to generate an asymptotic model K-equivalent to the unit vector basis of `3∞.

Thus by passing to subsequences, relabeling and ignoring tiny perturbations we get that for
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all 4 ≤ l1 < l2 < l3,

(4.21) ‖x3(1, 2, l1) + x3(1, 3, l2) + x3(2, 3, l3)‖ ≤ K.

This will ensure the condition (4.14).

The second refinement is done as before. Fix a large N = N(K, ε2/2) and using

the c0 spreading models assumption pick sequences (x3(1, 2, l))N+4
l=4 , (x3(1, 3, l))N+4

l=4 , and

(x3(2, 3, l))N+4
l=4 that are K-equivalent to the unit vector basis of `N∞. Refine the tree by

passing to subsequences of the successors of these so that the branch functionals f(1,2,l)aj̄ ,

f(1,3,l)aj̄ , and f(2,3,l)aj̄ are stabilized. That is, their values on the chosen nodes are inde-

pendent of j̄. Then a similar combinatorial argument as before yields (see the Gap lemma

below) a node from each sequence which we relabel as x3(1, 2, 4), x3(1, 3, 4), and x3(2, 3, 4)

so that

|f(1,2,4)aj̄(x
3(1, 3, 4))| < ε2/2, |f(1,2,4)aj̄(x

3(2, 3, 4))| < ε2/2,

|f(1,3,4)aj̄(x
3(1, 2, 4))| < ε2/2, |f(1,3,4)aj̄(x

3(2, 3, 4))| < ε2/2, and

|f(2,3,4)aj̄(x
3(1, 2, 4))| < ε2/2, |f(2,3,4)aj̄(x

3(1, 3, 4))| < ε2/2.

Let

y3
4 = x3(1, 2, 4) + x3(1, 3, 4) + x3(2, 3, 4).

Then the branch functionals through these nodes satisfy the desired gap properties: For

1 ≤ t1 < t2 < 4, denoting x(t1,t2,4) = x1(t1) + x2(t1, t2) + x3(t1, t2, 4) and y(t1,t2,4) =

y1
t1 + y2

t2 + y3
4 we have

∣∣∣f(1,2,4)aj̄

(
y(1,2,4) − x(1,2,4)

)∣∣∣ ≤ ∣∣∣f(1,2,4)aj̄

(
x3(1, 3, 4)

)∣∣∣+
∣∣∣f(1,2,4)aj̄

(
x3(2, 3, 4)

)∣∣∣
< ε2/2 + ε2/2,∣∣∣f(1,3,4)aj̄

(
y(1,3,4) − x(1,3,4)

)∣∣∣
≤

∣∣∣f(1,3,4)aj̄

(
x2(2, 3)

)∣∣∣+
∣∣∣f(1,3,4)aj̄

(
x3(1, 2, 4)

)∣∣∣+
∣∣∣f(1,3,4)aj̄

(
x3(2, 3, 4)

)∣∣∣
< ε1 + ε2/2 + ε2/2,

and ∣∣∣f(2,3,4)aj̄

(
y(2,3,4) − x(2,3,4)

)∣∣∣
≤

∣∣∣f(2,3,4)aj̄

(
x2(1, 3)

)∣∣∣+
∣∣∣f(2,3,4)aj̄

(
x3(1, 2, 4)

)∣∣∣+
∣∣∣f(2,3,4)aj̄

(
x3(1, 3, 4)

)∣∣∣
< ε1 + ε2/2 + ε2/2,
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As before, the idea is that fβ is large on the branch part of y1
t1 + y2

t2 + y3
4 and is small on

the off branch part where β = (t1, t2, 4).

We now proceed inductively. Suppose that for k − 1 ≤ j < i and k ≤ n,

yk−1
j =

∑
m∈Ak−1

j

xk−1(t̄m)

are defined where xk−1(t̄m) are (k − 1)-level nodes and Ak−1
j ⊂ N is finite. For each

t̄m = (t1, . . . , tk−1) denote the sum of the initial segment of a diagonal sequence of the array

constructed thus far by

yt̄m =
k−1∑
i=1

yiti ,

and the sum of the initial segment of the tree by

xt̄m =

k−1∑
i=1

xi(t1, . . . , tk−1).

For the induction hypothesis we also assume that the branch functionals ft̄maj̄ for the

branches whose initial segments are t̄m satisfy the gap property:

(4.22)
∣∣∣ft̄maj̄(yt̄m − xt̄m)

∣∣∣ < k−1∑
i=1

εi.

Consider the array formed by the sequences of successor nodes

(xk(t̄1a l))l>max t̄1 , (x
k(t̄2a l))l>max t̄2 , . . . , (x

k(t̄M a l))l>max t̄M

for m ∈
⋃i−1
j=k−1A

k−1
j and where M = |

⋃i−1
j=k−1A

k−1
j |. The array is formed in the order the

nodes appear in the support of yk−1
k−1, . . . , y

k−1
i−1 . By the main assumption the array generates

an asymptotic model K-equivalent to the unit vector basis of `M∞ . Thus by passing to

subsequences and relabeling we can assume that for all max1≤m≤M max t̄m < l1 < l2 <

. . . < lM ,

(4.23)

∥∥∥∥∥
M∑
m=1

xk(t̄ma lm)

∥∥∥∥∥ ≤ K.
Fix a large N = N(K, εk/M) (determined by the lemma below). For each 1 ≤ m ≤ M ,

using the fact that every sequence of successor nodes generates a c0 spreading model, pick(
xk(t̄ma l)

)
l∈Bm

, |Bm| = N , which is K-equivalent to the unit vector basis of `N∞. For all m

and l ∈ Bm, by passing to a subsequence of the successors (xk+1(t̄ma laj))j of xk(t̄ma l)
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we can assume that all the branch functionals ft̄malaj̄ are stabilized on the chosen nodes.

That is, for all j̄ and j̄′, ignoring tiny perturbations, we have

ft̄malaj̄(x
k(t̄m′a l

′)) = ft̄malaj̄′(x
k(t̄m′a l

′))

for all m 6= m′, and l ∈ Bm, l′ ∈ Bm′ . (Note: If k = n, the last level of the tree, then all the

branch functionals are already determined.)

Claim. For all 1 ≤ m ≤M there exist lm ∈ Bm such that for all m 6= m′

(4.24)
∣∣∣ft̄malmaj̄(xk(t̄m′a lm′))∣∣∣ < εk/M.

This is consequence of the following combinatorial lemma (for ε = εk/M .)

Gap lemma. Let ε > 0, M ∈ N. Then there exists N = N(ε,M,K) such that given

sequences (x1
l )
N
l=1, . . . , (x

M
l )Nl=1 each K-equivalent to the unit vector basis of `N∞ and func-

tionals (f1
l )Nl=1, . . . , (f

M
l )Nl=1 of norm at most 1 there exists l1, . . . , lM such that∣∣∣f jlj (xili)∣∣∣ < ε, for all i 6= j.

Proof. The proof is by induction on M . For the base case M = 2 we prove the following

which is a slight generalization of (4.18): For all N0 ∈ N there exists N = N(N0, ε,K)

so that whenever (x1
l )
N
l=1, (x

2
l )
N
l=1 and (f1

l )Nl=1, (f
2
l )Nl=1 are as in the statement there exist

A1, A2 ⊂ {1, . . . , N} with |A1|, |A2| ≥ N0 such that for all j ∈ A1 and i ∈ A2 we have

|f1
j (x2

i )| < ε and |f2
i (x1

j )| < ε.

Fix N ≥ N0(1 + K/ε + K2/ε2). For any functional f of norm at most 1 and sequence

(xi)
n
1 K-equivalent to the unit vector basis `n∞ we have, by (4.19), |{i : |f(xi)| ≥ ε}| ≤ K/ε.

Thus for N0(1 +K/ε) ≤ N1 ≤ N0(1 +K/ε) + 1,∣∣∣ N1⋂
l=1

{
1 ≤ i ≤ N : |f1

l (x2
i )| < ε

}∣∣∣ ≥ N −N1K/ε ≥ N0.

Let A2 be a subset of
⋂N1
l=1

{
1 ≤ i ≤ N : |f1

l (x2
i )| < ε

}
with cardinality N0 and we have

|A1| =
∣∣∣ ⋂
l∈A2

{
1 ≤ i ≤ N1 : |f2

l (x1
i )| < ε

}∣∣∣ ≥ N1 −N0K/ε ≥ N0,

as desired.

For the induction suppose that for all N0 ∈ N there exists N and A1, . . . , Am with

|Ai| ≥ N0 so that for all li ∈ Ai∣∣∣f jlj (xili)∣∣∣ < ε, for all 1 ≤ i 6= j ≤ m.



24 D. FREEMAN, E. ODELL, B. SARI, AND B. ZHENG

FixN0 ≥ 1+K/ε+K2/ε2 and apply the argument in the base case for the pairs (xil)l∈Ai
, (xm+1

l )N0
l=1

and (f il )l∈Ai
, (fm+1

l )N0
l=1 for 1 ≤ i ≤ m to get the desired (m+ 1)−tuple l1, . . . , lm+1 so that∣∣∣f jlj (xili)∣∣∣ < ε, for all 1 ≤ i 6= j ≤ m+ 1.

�

Consider l1, . . . , lM from the Claim. We discard the nodes xl(t̄ma l), l ∈ Bm and l 6= lm

and relabel the rest so that for all 1 ≤ m ≤ M , xk(t̄ma lm) = xk(t̄ma i) where i =

maxm max t̄m + 1 and put

(4.25) yki =
i−1∑

j=k−1

∑
m∈Ak−1

j

xk(t̄ma i).

By (4.23) ‖yki ‖ ≤ K. By the induction hypothesis (4.22) and the Claim (4.24) we have

(4.26)
∣∣∣f(t̄m,i,j̄)

(
(yt̄m + yki )− (xt̄m + xk(t̄ma i))

)∣∣∣ < k−1∑
i=1

εi +
M∑
m=1

εk/M =
k∑
i=1

εi

for all 1 ≤ m ≤M and j̄, as desired. This concludes the construction of the array.

Now let β = (i1, . . . , in) be arbitrary. Then by the construction and our main assumption

we have

fβ

( n∑
k=1

ykik

)
≥ fβ

( n∑
k=1

xk(i1, . . . , ik)
)
−
∣∣∣fβ( n∑

k=1

xk(i1, . . . , ik)−
n∑
k=1

ykik

)∣∣∣ ≥ C− n∑
k=1

εk > C−ε.

The proof is completed.

�
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