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BANACH SPACES OF BOUNDED SZLENK INDEX II

D. FREEMAN, E. ODELL, TH. SCHLUMPRECHT, AND A. ZSÁK

Abstract. For every α < ω1 we establish the existence of a separable Banach space whose
Szlenk index is ωαω+1 and which is universal for all separable Banach spaces whose Szlenk-
index does not exceed ωαω. In order to prove that result we provide an intrinsic characteri-
zation of which Banach spaces embed into a space admitting an FDD with upper estimates.

1. Introduction

The added structure and rich theory of coordinate systems can be of significant help when
studying Banach spaces. Because of this, it is often the case that Banach spaces are studied
in the context of being a subspace or quotient of some space with a coordinate system. Two
early results in this area are that every separable Banach space is the quotient of ℓ1 and also
every separable Banach space may be embedded as a subspace of C[0, 1]. Both ℓ1 and C[0, 1]
have bases, and so we have in particular that every separable Banach space is a quotient of a
Banach space with a basis and may also be embedded as a subspace of a Banach space with
a basis. However, it is often that one has a Banach space with a particular property, and
one wishes that the coordinate system has some associated property. The first important
step in this direction was made by Zippin [15] who proved the following two major results:
every separable reflexive Banach space may be embedded as a subspace of a space with
shrinking and boundedly complete basis, and every Banach space with separable dual may
be embedded in a Banach space with a shrinking basis. Further results in this area give
intrinsic characterizations on when a space may be embedded as a subspace of a reflexive
space with unconditional basis [5], or a reflexive space with an asymptotic ℓp FDD [11].
These are only a portion of the recent results in this area. These new characterizations
are all based on the relatively recent tool of weakly null trees. One important result in
particular for us is a characterization of subspaces of reflexive spaces with an FDD satisfying
subsequential V upper block estimates and subsequential U lower block estimates where V is
an unconditional, block stable, and right dominant basic sequence and U is an unconditional,
block stable, and left dominant basic sequence [12]. This characterization when applied to
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Tsirelson spaces was shown to have strong applications to the Szlenk index of reflexive
spaces [13]. Our main result adds to this theory with the following theorem which extends
the results in [12] and [13] to spaces with separable dual. The notions and concepts used
will be introduced in the next section.

Theorem 1.1. Let X∗ be separable and V = (vi) be a normalized, 1-unconditional, block
stable, right dominant, and shrinking basic sequence. Then the following are equivalent.

1) X has subsequential V upper tree estimates.
2) X is a quotient of a space Z with Z∗ separable and Z has subsequential V upper tree

estimates.
3) X is a quotient of a space Z with a shrinking FDD satisfying subsequential V upper

block estimates.
4) There exists a w∗ − w∗ continuous embedding of X∗ into Z∗, a space with boundedly

complete FDD (F ∗
i ) (so Z = ⊕Fi defines Z∗) satisfying subsequential V ∗ lower block

estimates.
5) X is isomorphic to a subspace of a space Z with a shrinking FDD satisfying subse-

quential V upper block estimates.

Using our characterization, we are able to achieve the following universality result:

Theorem 1.2. Let V = (vi) be a normalized, 1-unconditional, shrinking, block stable, and
right dominant basic sequence. There is a Banach space Z with a shrinking FDD (Fi)
satisfying subsequential V upper block estimates such that if a Banach space X with separable
dual satisfies subsequential V upper tree estimates, then X embeds into Z.

We will apply Theorems 1.1 and 1.2 for the case that V is the canonical basis of Tα,c, the
Tsirelson space of order α and parameter c, which will allow us to prove some new results
for the Szlenk index. As shown in [13], the Szlenk index is closely related to a space having
subsequential Tα,c upper tree estimates for some 0 < c < 1. In particular, for each α < ω1

if a Banach space X with separable dual has Szlenk index at most ωαω, then X satisfies
subsequential Tα,c upper tree estimates for some c ∈ (0, 1). In [13] the converse is also shown
in the case that X is reflexive. Our characterization allows us to extend this to the class of
spaces with separable dual. We give the following theorem.

Theorem 1.3. Let α < ω1. For a space X with separable dual, the following are equivalent:

(i) X has Szlenk index at most ωαω.
(ii) X satisfies subsequential Tα,c upper tree estimates for some c ∈ (0, 1).
(iii) X embeds into a space Z with an FDD (Ei) which satisfies subsequential Tα,c upper

block estimates in Z for some c ∈ (0, 1).

Note that the implication (iii)⇒(i) shows that the space Z in (iii) also has Szlenk index at
most ωαω. In particular, since the unit vector basis of Tα,c satisfies subsequential Tα,c upper
block estimates, the same is true for Tα,c. The above structure theorem then says that the
Tsirelson spaces Tα,c form a sort of upper envelope for the class of spaces with separable dual
and with Szlenk index at most ωαω.
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We are able to combine the previous two theorems using ideas in [13] to prove the following
universality result.

Theorem 1.4. For each α < ω1 there exists a Banach space Z with a shrinking FDD and
Szlenk index at most ωαω+1 such that Z is universal for the collection of spaces with separable
dual and Szlenk index at most ωαω.

In particular, the universal space Z will be of the form (
∑

n∈N
Xn)ℓ2, where Xn has an

FDD satisfying subsequential Tα, n
n+1

upper block estimates and Xn is universal for all Banach

spaces with separable dual which satisfy subsequential Tα, n
n+1

upper tree estimates.

Theorem 1.4 represents a quantitative version of a result first shown by Dodos and Ferenczi
[2], which states that for every α < ω1 there is a Banach space with separable dual which is
universal for all separable Banach spaces whose Szlenk index does not exceed α. As well as
finding a bound on the Szlenk index of this universal space, we also express, as mentioned
above, the topological property of having a certain Szlenk index in terms of norm estimates
in which the Tsirelson spaces play an essential rôle. While the proofs in [2] use methods of
descriptive set theory developed by Bossard [1], our proofs will rely on concepts like infinite
asymptotic games, trees and branches as introduced in [8] and [10].

2. Definitions and lemmas

Our main result characterizes subspaces and quotients of spaces having a shrinking FDD
with subsequential V upper block estimate, where V is an unconditional, right dominant,
block stable, and shrinking basic sequence. The case when V = Tα,c is a Tsirelson space is
intimately related to the Szlenk index, and has become an important property in the fertile
area between descriptive set theory and the classification of Banach spaces [13]. For α < ω1

and c ∈ (0, 1), the definition of the Tsirelson space Tα,c of order α and parameter c, and the
relevant properties of Tα,c for us can also be found in [13].

For basic notions like (shrinking and boundedly complete) FDDs and their projection
constants and blockings we refer to [12]. If Z is a Banach spaces with an FDD E = (Ei),
we denote by c00(⊕Ei) the dense linear subspace of Z spanned by (Ei) and its closure by
[Ei] = [Ei]Z . We denote the closure of c00(⊕E∗

i ) inside Z∗ by Z(∗). If (Ei) is shrinking it
follows that Z(∗) = Z∗ and if (Ei) is boundedly complete, then Z(∗) is the predual of Z.
If A ⊂ N is finite, or cofinite, we denote the natural projection onto the closed span of
(Ei : i ∈ A) by P E

A , i.e.

P E
A : Z → Z, P E

A

(

∞
∑

i=1

xi

)

=
∑

i∈A

xi, whenever xi ∈ Ei for i ∈ N so that

∞
∑

i=1

xi ∈ Z.

Let us also recall the following notion from [12].

Definition 2.1. Let Z be a Banach space with an FDD (En), let V = (vi) be a normalized
1-unconditional basis, and let 1 ≤ C < ∞. We say that (En) satisfies subsequential C-V -
upper block estimates if every normalized block sequence (zi) of (En) in Z is C-dominated
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by (vmi
), where mi = min suppE(zi) for all i ∈ N. We say that (En) satisfies subsequential

C-V -lower block estimates if every normalized block sequence (zi) of (En) in Z C-dominates
(vmi

), where mi = min suppE(zi) for all i ∈ N. We say that (En) satisfies subsequential
V -upper (or lower) block estimates if it satisfies subsequential C-V -upper (or lower) block
estimates for some 1 ≤ C < ∞.

Subsequential V -upper block estimates and subsequential V -lower block estimates are dual
properties, as shown in the following proposition from [12].

Proposition 2.2. [12, Proposition 2.14] Assume that Z has an FDD (Ei), and let V = (vi)
be a 1-unconditional normalized basic sequence with biorthogonal functionals V ∗ = (v∗

i ). The
following statements are equivalent:

(a) (Ei) satisfies subsequential V -upper block estimates in Z.

(b) (E∗
i ) satisfies subsequential V ∗-lower block estimates in Z(∗).

Moreover, if (Ei) is bimonotone in Z, then the equivalence holds true if one replaces, for
some C ≥ 1, V -upper estimates by C-V -upper estimates in (a) and V ∗-lower block estimates
by C-V ∗-lower block estimates in (b).

It is important to note that if a Banach space Z has an FDD (En) which satisfies sub-
sequential V upper block estimates where V = (vi) is weakly null, then (En) is shrinking.
Indeed, any normalized block sequence of (En) is dominated by a weakly null sequence, and
is thus weakly null. Thus if V is weakly null, a necessary condition for a Banach space
X to be isomorphic to a quotient or subspace of a Banach space with an FDD satisfying
subsequential V -upper block estimates is that X have separable dual. This is important as
spaces with separable dual may be analyzed using weakly null trees . In this paper we will
need in particular weakly null even trees (see [12]).

In order to index weakly null even trees, we denote

T even
∞ = {(n1, n2, ..., n2ℓ) : n1 < n2 < ... < n2ℓ are in N and ℓ ∈ N}.

Definition 2.3. If X is a Banach space, an indexed family (xα)α∈T even
∞

⊂ X is called an even
tree. Sequences of the form (xn1,...,n2ℓ−1,k)

∞
k=n2ℓ−1+1 are called nodes. Sequences of the form

(n2ℓ−1, xn1,...,n2ℓ
)∞ℓ=1 are called branches. A normalized tree, i.e. one with ||xα|| = 1 for all

α ∈ T even
∞ , is called weakly null if every node is a weakly null sequence.

If T ′ ⊂ T even
∞ is closed under taking restrictions so that for each α ∈ T ′ ∪ {∅} and for each

m ∈ N the set {n ∈ N : (α, m, n) ∈ T ′} is either empty or has infinite size, and moreover
the latter occurs for infinitely many values of m, then we call (xα)α∈T ′ a full subtree of
(xα)α∈T even

∞
. Note that (xα)α∈T ′ could then be relabeled to a family indexed by T even

∞ , and
note that the branches of (xα)α∈T ′ are branches of (xα)α∈T even

∞
and that the nodes of (xα)α∈T ′

are subsequences of certain nodes of (xα)α∈T even
∞

.
In case that X has an FDD (Ei), we say that a normalized tree is a block tree (with respect

to (Ei)) if every node is a block sequence with respect to (Ei). Note that every weakly null
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tree has a full subtree which is a perturbation of a block tree, and that if (Ei) is shrinking,
then every block tree is weakly null.

If Z is a Banach space with an FDD (En), and X is a closed subspace of Z then any
weakly null even tree in X has a branch equivalent to a block basis of (En). Thus if (En)
satisfies subsequential V -upper block estimates, then every weakly null even tree in X has
a branch (n2ℓ−1, xn1,...,n2ℓ

)∞ℓ=1 such that (xn1,...,n2ℓ
)∞ℓ=1 is dominated by (vn2ℓ−1

)∞ℓ=1. We make
this into a coordinate free condition with the following definition.

Definition 2.4. Let X be a Banach space, V = (vi) be a normalized 1-unconditional basis,
and 1 ≤ C < ∞. We say that X satisfies subsequential C-V -upper tree estimates if every
weakly null even tree (xα)α∈T even

∞
in X has a branch (n2ℓ−1, xn1,...,n2ℓ

)∞ℓ=1 such that (xn1,...,n2ℓ
)∞ℓ=1

is C-dominated by (vn2ℓ−1
)∞ℓ=1.

We say that X satisfies subsequential V -upper tree estimates if it satisfies subsequential
C-V -upper tree estimates for some 1 ≤ C < ∞.

If X is a subspace of a dual space, we say that X satisfies subsequential C-V -lower w∗tree
estimates if every w∗ null even tree (xα)α∈T even

∞
in X has a branch (n2ℓ−1, xn1,...,n2ℓ

)∞ℓ=1 such
that (xn1,...,n2ℓ

)∞ℓ=1 C-dominates (vn2ℓ−1
)∞ℓ=1.

We have a property of trees and a property of FDDs, and our goal is to show how they
are related. Zippin’s theorem allows us to embed a Banach space with separable dual into
a space with shrinking FDD. Our next step will be to then pass information about trees in
the space to information about δ̄-skipped blocks of the FDD, which we define here.

Definition 2.5. Let E = (Ei) be an FDD for a Banach space Y and let δ̄ = (δi) with
δi ↓ 0. A sequence (yi) ⊂ SY is called a δ̄ − skipped block w.r.t. (Ei) if there exist integers
1 = k0 < k1 < ... so that for all i ∈ N,

‖P E
(ki−1,ki)

yi − yi‖ < δi.

The following proposition is an adaptation of Proposition 2.18 in [12] for the case (Ei) is
shrinking, but not necessarily boundedly complete and for the case where X is a w∗-closed
subspace of a dual space. We will need to first recall some notation introduced in [12].

Given a Banach space X, we let (N×SX)ω denote the set of all sequences (ki, xi), where
k1 < k2 < . . . are positive integers, and (xi) is a sequence in SX . We equip the set (N×SX)ω

with the product topology of the discrete topologies of N and SX . Given A ⊂ (N×SX)ω and
ε>0, we let

Aε =
{

(

(ℓi, yi) : i ∈ N
)

∈(N×SX)ω : ∃
(

(ki, xi) : i ∈ N
)

∈A ki≤ℓi , ‖xi−yi‖<ε·2−i ∀ i∈N

}

,

and we let A be the closure of A in (N×SX)ω.
Given A⊂(N×SX)ω, we say that an even tree (xα)α∈T even

∞
in X has a branch in A if there

exist n1 <n2 <. . . in N such that
(

(n2i−1, x(n1,n2,...,n2i)) : i ∈ N
)

∈A.
Let Z be a Banach space with an FDD (Ei) and assume that Z contains X. Let C be

the projection constant of (Ei) in Z. For each m ∈N we set Zm =
⊕

i>m Ei. Given ε > 0,
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we consider the following game between players S (subspace chooser) and P (point chooser).
The game has an infinite sequence of moves; on the nth move (n∈N) S picks kn, mn∈N and
P responds by picking xn ∈ SX with d(xn, Zmn

) < ε′ ·2−n, where ε′ = min{ε, 1}. S wins the
game if the sequence (ki, xi) the players generate ends up in A5Cε, otherwise P is declared
the winner. We will refer to this as the (A, ε)-game. Note that the definition of S winning
is slightly different from the one given in [12]. This is because of the extra complication of
dealing with the non-reflexive case.

Proposition 2.6. Let X be an infinite-dimensional closed subspace of a space Z with an
FDD (Ei). Let A ⊂ (N × SX)ω. If (Ei) is shrinking, or if Z is a dual space with (Ei)
boundedly complete and X w∗ closed in Z, then the following are equivalent.

(a) For all ε > 0 there exists (Ki) ⊂ N with K1 < K2 < ..., δ = (δi) ⊂ (0, 1) with δi ց 0,
and a blocking F = (Fi) of (Ei) such that if (xi) ⊂ SX is a δ-skipped block sequence
of (Fn) in Z with ||xi − P F

(ri−1,ri)
xi|| < δi for all i ∈ N, where 1 ≤ r0 < r1 < r2 < ...,

then (Kri−1
, xi) ∈ Aε.

(b) For all ε > 0 S has a winning strategy for the (A, ε)-game.

If (Ei) is shrinking, then (a) and (b) are equivalent to

(c) for all ε > 0 every normalized, weakly null even tree in X has a branch in Aε.

If Z is a dual space with (Ei) boundedly complete and X w∗ closed in Z, then (a) and (b)
are equivalent to

(d) for all ε > 0 every normalized, w∗ null even tree in X has a branch in Aε.

Proof. The proofs of the implications (b) ⇒ (a) ⇒ (d) ⇒ (b) shown in the reflexive case
[12, Proposition 2.18] still hold in the nonreflexive case when Z is a dual space with (Ei)
boundedly complete and X w∗ closed in Z: we use w∗ compactness of BX , and the fact that
(Ei) is biorthogonal to a shrinking FDD of a predual of Z (instead of weak compactness of
BX and the shrinking property of (Ei) as in [12]).

For the case in which (Ei) is shrinking, the proofs of the implications (b) ⇒ (a) ⇒ (c)
shown for the reflexive case still work. The proof for the implication (c) ⇒ (b) requires some
adaptation which we provide here.

We start with a preliminary result: let Zm =
⊕

i>m Ei as before, and let C be the
projection constant of (Ei) in Z. Then for every η > 0 with (1 + C)η < 1 and for every
sequence (zi) ⊂ SX with d(zi, Zi) < η for all i ∈ N, there is a subsequence (xi) of (zi) and a
weakly null sequence (yi) ⊂ SX such that ||xi − yi|| < 2(1 + C)η for all i ∈ N. Indeed, we
can pass to a weakly Cauchy subsequence (xi) of (zi) such that

(1) ||P E
[1,n](xi − xj)|| < η2−j ∀n ∈ N and i > j ≥ n.

Since d(xi, Zi) < η, we have ||P E
[1,i]xi|| < Cη for all i ∈ N. Since (Ei) is shrinking, the sequence

(P E
(i,∞)xi) is weakly null, and so for each n ∈ N there exists (a

(n)
i )

K(n)
i=n = (ai)

K
i=n ⊂ [0, 1] such
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that
∑K

i=n ai = 1 and ||
∑K

i=n aiP
E
(i,∞)xi|| < η. Set

yn =
xn −

∑

aixi

||xn −
∑

aixi||
.

We have that
∥

∥

∥

∥

∥

K
∑

i=n

aixi

∥

∥

∥

∥

∥

≤
K

∑

i=n

ai||P
E
[1,i]xi|| +

∥

∥

∥

∥

∥

K
∑

i=n

aiP
E
(i,∞)xi

∥

∥

∥

∥

∥

<

K
∑

i=n

aiCη + η = (1 + C)η ,

which implies that ||xn − yn|| < 2(1 + C)η. We also have

||P[1,n]yn|| ≤ 2
∥

∥

∥
P[1,n](xn −

∑

aixi)
∥

∥

∥
≤ 2

∑

ai||P[1,n](xn − xi)|| < 2η2−n ,

which tends to zero as n → ∞. Hence (yn) ⊂ SX is weakly null as (Ei) is shrinking.
We now continue with the proof of the implication (c) ⇒ (b). Assume that S does not

have a winning strategy for the (A, ε) game for some ε > 0. As this game is determined
[7] , there exists a winning strategy φ for the point chooser. The function φ takes values in
SX : if (ki), (mi) ∈ [N]ω are the choices by player S and if zn = φ(k1, m1, ..., kn, mn) for all
n ∈ N, then d(zi, Zmi

) < ε2−i for all i ∈ N and (ki, zi) 6∈ A5Cε. We can, of course, assume
that (1 + C)ε < 1. For each α ∈ T even

∞ set zα = φ(α). Then (zα)α∈T even
∞

is a normalized

even tree in X no branch of which is in A5Cε. Its nodes (zi) = (z(k1,...,k2ℓ−1,i))i>k2ℓ−1
satisfy

d(zi, Zi) < ε2−ℓ for all i > k2ℓ−1. By repeated applications of our preliminary observation we
can find a full subtree (xα)α∈T even

∞
of (zα)α∈T even

∞
and a weakly null even tree (yα)α∈T even

∞
such

that ||xα − yα|| < 2(1 + C)ε2−ℓ for all ℓ ∈ N and α = (k1, . . . , k2ℓ) ∈ T even
∞ . Since no branch

of (xα)α∈T even
∞

is in A5Cε, it follows that no branch of (yα)α∈T even
∞

is in ACε. Thus (c) fails. �

Remark. We will be applying Proposition 2.6 for the case A = {(ni, xi)
∞
i=1 |(vni

) dominates (xi)}
where (vi) is a 1-unconditional basic sequence. We will also be repeatedly applying the tech-
nique of blocking FDDs. For this reason it is important that properties of δ̄-skipped blocks
are preserved by blockings. This follows at once from the following simple observation: As-
sume that (Ei) is an FDD with projection constant K, and (Hi) is a blocking of (Ei). Then
a δ̄-skipped block of (Hi) is a 2Kδ̄-skipped block of (Ei).

We will be concerned with a space X which satisfies subsequential V -upper tree estimates.
However the nature of our proofs require us to work with X∗ as well. This is because some
of the blocking techniques which we use depend on the FDD being boundedly complete.
Before stating a duality result on upper tree estimates, we need the following definition:
A basic sequence V = (vi) is C-right dominant (respectively, C-left-dominant) if for all
sequences m1 < m2 < . . . and n1 < n2 < . . . of positive integers with mi ≤ ni for all i ∈ N

we have that (vmi
) is C-dominated by (respectively, C-dominates) (vni

). We say that (vi) is
right-dominant or left-dominant if for some C≥1 it is C-right-dominant or C-left-dominant,
respectively.



8 D. FREEMAN, E. ODELL, TH. SCHLUMPRECHT, AND A. ZSÁK

Lemma 2.7. Let X be a Banach space with separable dual, and let V = (vi) be a normalized,
1-unconditional, right dominant basis. If X satisfies subsequential V -upper tree estimates,
then X∗ satisfies subsequential V ∗-lower w∗ tree estimates.

Proof. X has separable dual, so by [3, Corollary 8] there exists a space Z with a shrinking
and bimonotone FDD (Fi) for which there is a quotient map Q : Z → X. After renorming
X we may assume that it has the quotient norm ||x|| = infQy=x ||y|| for all x ∈ X. This
gives that Q∗ is an isometric embedding of X∗ into Z∗. Furthermore, (F ∗

i ) is a boundedly
complete FDD for Z∗ as (Fi) is shrinking.

We next show that if (xi) ⊂ SX∗ is w∗ null, then there is a subsequence (x′
i) of (xi) and a

weakly null sequence (yi) ⊂ SX such that x′
i(yi) > 3

4
for all i ∈ N.

We have (Q∗xi) is w∗ null in Z∗ as Q∗ is w∗ to w∗ continuous. Hence there is a subsequence
(x′

i) of (xi) such that ||P F ∗

[1,i)Q
∗x′

i|| < 1
4

for all i. As (Fi) is bimonotone, there exists (zi) ⊂ SZ

such that ||P F
[1,i)zi|| = 0 and Q∗x′

i(zi) > 3
4
. Note that ||Q(zi)|| > 3

4
for all i, and that the

sequence (zi) is coordinate-wise null and hence weakly null as (Fi) is shrinking. It follows

that yi = Q(zi)
||Q(zi)||

defines a weakly null sequence in SX with x′
i(yi) > 3

4
for all i.

Now let (xα)α∈T even
∞

⊂ SX∗ be a w∗ null tree. By repeated applications of the above result,
there is a full subtree (x′

α) of (xα) and a weakly null tree (yα) in X such that x′
α(yα) > 3

4
for

all α ∈ T even
∞ . Passing to further subtrees if necessary, we can also assume that for k < ℓ in N

and for α = (n1, . . . , n2k), β = (n1, . . . , n2ℓ) in T even
∞ we have max{|x′

α(yβ)|, |x
′
β(yα)|} < 4−ℓ.

Let (n2k−1, y(n1,...,n2k))
∞
k=1 be a branch of the weakly null tree (yα)α∈T even

∞
such that (vn2k−1

)∞k=1

C-dominates (y(n1,...,n2k))
∞
k=1 for some C ≥ 1. Let (ai) ∈ c00 such that ||

∑

aiv
∗
i || = 1. There

exists (bi) ∈ c00 such that ||
∑

bivi|| = 1 and
∑

aibi = 1 as (vi) is bimonotone. Furthermore,
sign(ai) = sign(bi) as (vi) is 1-unconditional. We have that,

1 = ||
∞

∑

i=1

aiv
∗
i ||

=

∞
∑

i=1

aibi

≤
4

3

∞
∑

i=1

aibix
′
(n1,...,n2i)

(y(n1,...,n2i))

≤
4

3
(

∞
∑

k=1

akx
′
(n1,...,n2k))(

∞
∑

ℓ=1

bℓy(n1,...,n2ℓ)) +
4

3

∞
∑

k=1

∑

ℓ 6=k

|x′
(n1,...,n2k)(y(n1,...,n2ℓ))|

≤
4

3
(

∞
∑

k=1

akx
′
(n1,...,n2k))(

∞
∑

ℓ

bℓy(n1,...,n2ℓ)) +
2

3

< C
4

3
||

∞
∑

k=1

akx
′
(n1,...,n2k)|| +

2

3
.
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Hence (x′
(n1,...,n2k))

∞
k=1 4C-dominates (v∗

n2k−1
)∞k=1. Finally, the branch (n2k−1, x

′
(n1,...,n2k)) corre-

sponds to a branch (m2k−1, x(m1,...,m2k)) in the original tree with ni ≤ mi for all i ∈ N. Since
(vi) is right dominant, (v∗

i ) is left dominant, and hence (x(m1,...,m2k)) dominates (v∗
m2k−1

).
Thus X∗ satisfies subsequential V ∗-lower w∗ tree estimates. �

Proposition 2.6 allows us to pass from information about trees to information about δ̄-
skipped blocks of an FDD (En). To go from information about δ̄-skipped blocks to blocks
in general, we will renorm the FDD (En) to form a new space.

Let Z be a space with an FDD E = (En) and let V = (vi) be a normalized 1-unconditional
basic sequence. The space ZV = ZV (E) is defined to be the completion of c00(

⊕

En) with
respect to the following norm ‖ · ‖ZV .

‖z‖ZV = max
k∈N, 1≤n0<n1<...<nk

∥

∥

∥

k
∑

j=1

‖P E
[nj−1,nj)

(z)‖Z · vnj−1

∥

∥

∥

V
for z ∈ c00(Ei).

We note that if ‖ · ‖ and ‖ · ‖′ are equivalent norms on Z then the corresponding norms
‖ · ‖ZV and ‖ · ‖′

ZV are equivalent on c00(
⊕

En). This allows us, when examining the space
ZV , to assume that (En) is bimonotone in Z. The following proposition from [12] is what
makes the space ZV essential for us. Recall that a basic sequence is called C-block stable for
some C ≥ 1 if any two normalized block bases (xi) and (yi) with

max
(

supp(xi) ∪ supp(yi)
)

< min
(

supp(xi+1) ∪ supp(yi+1)
)

for all i∈N

are C-equivalent. We say that (vi) is block-stable if it is C-block-stable for some constant C.
The following Proposition recalls some properties of ZV which were shown in [12].

Proposition 2.8. [12, Corollary 3.2, Lemma 3.3 and 3.5] Let V = (vi) be a normalized,
1-unconditional, and C-block-stable basic sequence. If Z is a Banach space with an FDD
(Ei), then (Ei) satisfies 2C-V -lower block estimates in ZV (E).

If the basis (vi) is boundedly complete then (Ei) is a boundedly complete FDD for ZV (E).
If the basis (vi) is shrinking and if (Ei) is shrinking in Z, then (Ei) is a shrinking FDD

for ZV (E).

In proving our main theorem we will show that if X satisfies subsequential V -upper tree
estimates then it is isomorphic to a subspace of some ZV (E) and is isomorphic to a quotient
of some ZV (F ).

3. Proofs of the main results

Proof of Theorem 1.1. 1) ⇒ 4) (vi) is D-right-dominant for some D ≥ 1, from which we
can easily deduce that (v∗

i ) is D-left-dominant. By [3, Corollary 8] there exists a space Z
with a shrinking and bimonotone FDD (Ei) for which there is a quotient map Q : Z →
X. The map Q∗ : X∗ → Z∗ is an into isomorphism. After renorming X if necessary,
we can assume that X has the quotient norm induced by Q, and so Q∗ is an isometric
embedding. By Lemma 2.7 we have that X∗ satisfies subsequential C-V ∗ lower w∗ tree
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estimates for some C ≥ 1. As Q∗X∗ ⊂ Z∗ is w∗ closed, we may apply Proposition 2.6
with A = {(ni, xi)

∞
i=1 ∈ (N × SQ∗X∗)ω |(xi) C-dominates (vni

)} and ε > 0 such that Aε ⊂
{(ni, xi)

∞
i=1 ∈ (N × SQ∗X∗)ω |(xi) 2CD-dominates (vni

)}. This gives sequences (Ki) ∈ [N]ω

and δ̄ = (δi) ⊂ (0, 1) and a blocking (Fi) of (E∗
i ) such that if (xi) ⊂ SQ∗X∗ and ||xi −

P F
(ri−1,ri)

(xi)|| < 2δi for some (ri) ∈ [N]ω then (Kri−1
, xi) ∈ Aε. Hence, the sequence (xi)

2CD-dominates (vKri−1
).

We choose a blocking G = (Gi) of (Fi) defined by Gi =
∑mi

j=mi−1+1 Fj for some (mi) ∈ [N]ω

such that there exists (en) ⊂ SQ∗X∗ with ||en − P G
n (en)|| < δn/2 for all n ∈ N.

In order to continue we need a result from [8] which is based on an argument due to
W. B. Johnson [4]. [8, Corollary 4.4] was stated for reflexive spaces. Here we state it for
w∗-closed subspaces of dual spaces with a boundedly complete FDD: the proof is easily seen
to work in this situation. Also note that conditions (d) and (e) which were not stated in [8]
follow easily from the proof.

Proposition 3.1. [8, Lemma 4.3 and Corollary 4.4] Let Y be a w∗ closed subspace of a dual
Banach space Z with a boundedly complete FDD A = (Ai) having projection constant K.
Let η̄ = (ηi) ⊂ (0, 1) with ηi ↓ 0. Then there exists (Ni)

∞
i=1 ∈ [N]ω such that the following

holds. Given (ki)
∞
i=0 ∈ [N]ω and x ∈ SY , there exists xi ∈ Y and ti ∈ (Nki−1−1, Nki−1

) for all
i ∈ N with N0 = 0 and t0 = 0 such that

(a) x =
∑∞

i=1 xi, and for all i ∈ N we have

(b) either ||xi|| < ηi or ||xi − P A
(ti−1,ti)

xi|| < ηi||xi||,

(c) ||xi − P A
(ti−1,ti)

x|| < ηi,

(d) ||xi|| < K + 1,

(e) ||P A
ti

x|| < ηi.

We apply Proposition 3.1 with Y = Q∗X∗, A = G and η̄ = δ̄ which gives a sequence

(Ni) ∈ [N]ω. We set Hj =
⊕Nj

i=Nj−1+1 Gi for each j ∈ N. To make notation easier we let

V ∗
M = (v∗

Mi
) be the subsequence of (v∗

i ) defined by Mi = KmNi
.

Fix x ∈ SQ∗X∗ and a sequence (ni)
∞
i=0 ∈ [N]ω, the proof in [12, Theorem 4.1(a)] shows

∥

∥

∥

∞
∑

i=1

‖P H
[ni−1,ni)

(x)‖Z∗ · v∗
Mni−1

∥

∥

∥

V ∗

≤ 4D2C(1 + 2∆ + 2) + 2 + 3∆.

where ∆ =
∑∞

i=1 δi. Thus the norms || · ||Z∗ and || · ||
(Z∗)V ∗

M
are equivalent on Q∗X∗. As

the norm on each Hj is unchanged, a coordinate-wise null sequence in Q∗X∗ ⊂ Z∗ will still
be coordinate-wise null in (Z∗)V ∗

M . Hence the map Q∗ : X∗ → (Z∗)V ∗

M is still w∗ to w∗

continuous.
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We have that (Z∗)V ∗

M has a boundedly complete FDD (Hj) which satisfies subsequential V ∗
M

lower block estimates by Proposition 2.8. We can now fill in the FDD as in [12, Lemma 2.13].
We let BMj

= Hj for all j ∈ N and we let Bj = R for each j 6∈ (Mi). For x = (xj) ∈ c00(Bj)
we define

‖x‖ =
∥

∥

∥

∑

j∈N

xMj

∥

∥

∥

(Z∗)
V ∗

M

+
∑

j 6∈M

|xj |.

We let Y be the completion of c00(⊕Bj) under this norm. Y is clearly isometrically iso-
morphic to (Z∗)V ∗

M ⊕ ℓ1 or (Z∗)V ∗

M ⊕ ℓn
1 for some n ∈ N0. Thus the natural embedding of

(Z∗)V ∗

M into Y is w∗ to w∗ continuous. Hence there is a w∗ to w∗ continuous embedding of
X∗ into Y . Finally, from the fact that (Hj) satisfies subsequential V ∗

M lower block estimates
in (Z∗)V ∗

M it is not hard to deduce that (Bj) satisfies subsequential V ∗ lower block estimates
in Y .

4) ⇒ 3) This is clear because if (F ∗
i ) is a boundedly complete FDD of Z∗ then (Fi) is a

shrinking FDD of Z and a w∗−w∗ continuous embedding T : X∗ → Z∗ must be the dual of
some quotient map Q : Z → X. Also, (F ∗

i ) having subsequential V ∗ lower block estimates
is equivalent to (Fi) having subsequential V upper block estimates due to Proposition 2.2.

3) ⇒ 1) Let (Fi) be a bimonotone shrinking FDD which satisfies subsequential V upper
block estimates, and Q : Z → X be a quotient map. There exists C > 0 such that
BX ⊂ Q(CBZ). We will need the following lemma.

Lemma 3.2. Let X and Z be Banach spaces, F = (Fi) be a bimonotone FDD for Z, and
Q : Z → X be a quotient map. If (xi) ⊂ SX is weakly null and Q(CBZ) ⊇ BX for some
C > 0 then for all ε > 0 and n ∈ N there exists N ∈ N and z ∈ 2CBZ such that P[1,n]z = 0
and ||Qz − xN || < ε.

Proof. Let zi ∈ CBZ such that Qzi = xi. After passing to a subsequence (zki
) and perturbing

we may assume instead that P F
[1,n]zki

= z0 for some z0 ∈ CBZ , and that ||Qzki
− xki

|| < ε/3.

As (xki
) is weakly null, 0 must be in the closure of the convex hull of (xki

). Hence there
is some finite sequence (ai)

m
i=2 ⊂ [0, 1] such that ||

∑m

i=2 aixki
|| < ε/3 and

∑m

i=2 ai = 1. Let
z = zk1 −

∑m

i=2 aizki
. Then z ∈ 2CBZ , P F

[1,n]z = 0, and

||Qz−xk1 || = ||Qzk1−xk1−
m

∑

i=2

aiQzki
|| ≤ ||Qzk1−xk1 ||+

m
∑

i=2

ai||Qzki
−xki

||+||
m

∑

i=2

aixki
|| < ε.

�

Continuation of proof of Theorem 1.1. Let (xt)t∈T even
∞

⊂ SX be a weakly null even tree in X,
and let η ∈ (0, 1). By Lemma 3.2 we may pass to a full subtree (x′

t)t∈T even
∞

of (xt) so that
there exists a block tree (zt)t∈T even

∞
⊂ 2CBZ such that ||Q(zt)− x′

t|| < η2−ℓ for all ℓ ∈ N and
t = (k1, . . . , k2ℓ) ∈ T even

∞ . Now choose 1 = k1 < k2 < . . . such that max supp(z(k1,...,k2i)) <
k2i+1 < min supp(z(k1,...,k2i+2)) for all i ∈ N. Then (z(k1,...,k2i)) is dominated by (vk2i−1

), and
hence (x′

(k1,...,k2i)
) is dominated by (vk2i−1

) provided η was chosen sufficiently small. Finally,

the branch (k2i−1, x
′
(k1,...,k2i)

) corresponds to a branch (ℓ2i−1, x(ℓ1,...,ℓ2i)) in the original tree with
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ki ≤ ℓi for all i ∈ N. Since (vi) is right-dominant, it follows that (x(ℓ1,...,ℓ2i)) is dominated by
(vℓ2i−1

). Thus X satisfies subsequential V upper tree estimates.
2) ⇒ 1) We assume that X is a quotient of a space Z with separable dual such that Z

satisfies subsequential V upper tree estimates. By the implication 1) ⇒ 3) applied to Z, Z
is the quotient of a space Y with a shrinking FDD satisfying subsequential V upper block
estimates. X is then also a quotient of Y , so by the implication 3) ⇒ 1) we have that X
satisfies subsequential V upper tree estimates.

1) ⇒ 5) Our proof will be based on the proof of [12, Theorem 4.1(b)]. By Zippins theorem
we may assume, after renorming X if necessary, that there exists a Banach space Z with
a shrinking, bimonotone FDD (Fj) and an isometric embedding i : X →֒ Z. Also, by [3,
Corollary 8] we know that there exists a Banach space W with a shrinking FDD (Ej) and
a quotient map Q : W ։ X. Thus we have a quotient map i∗ : [F ∗

j ] = Z∗
։ X∗ and an

embedding Q∗ : X∗ →֒ [E∗
j ] = W ∗. We can assume, after renorming W if necessary, that

Q∗ is an isometric embedding. Note that (F ∗
j ) and (E∗

j ) are boundedly complete FDDs of
Z∗ and W ∗, respectively, and that X∗ has the quotient norm induced by i∗. Let K be the
projection constant of (Ej) in W .

By Lemma 2.7, X∗ satisfies subsequential C-V ∗ lower w∗ tree estimates for some C ≥ 1.
Choose D ≥ 1 such that (vi) is D right dominant. Since Q∗X∗ is w∗ closed in W ∗, we
can apply Proposition 2.6 as in the proof of the implication 1) ⇒ 4): after blocking (E∗

j ),

we find sequences (Ki) ∈ [N]ω and δ̄ = (δi) ⊂ (0, 1) with δi ↓ 0 such that if (xi) ⊂ SQ∗X∗

is a 2Kδ̄-skipped block of (E∗
j ) with ||xi − P E∗

(ri−1,ri)
xi|| < 2Kδi for all i ∈ N, where 1 ≤

r0 < r1 < r2 < . . . , then (v∗
Kri−1

) is 2CD-dominated by (xi), and moreover, using standard

perturbation arguments and making δ̄ smaller if necessary, we can assume that if (wi) ⊂ W ∗

satisfies ||xi − wi|| < δi for all i ∈ N, then (wi) is a basic sequence equivalent to (xi) with
projection constant at most 2K. We can also assume that ∆ =

∑∞
i=1 δi < 1

7
.

Choose a sequence (εi) ⊂ (0, 1) with εi ↓ 0 and 3K(K + 1)
∑∞

j=i εj < δ2
i for all i ∈ N.

After blocking (E∗
j ) if necessary, we can assume that for any subsequent blocking D of E∗

there is a sequence (ei) in SQ∗X∗ such that ||ei − P D
i (ei)|| < εi/2K for all i ∈ N.

Using Johnson and Zippin’s blocking lemma [6] we may assume, after further blocking our
FDDs (F ∗

j ) and (E∗
j ) if necessary, that given k < ℓ, if z∗ ∈

⊕

j∈(k,ℓ) F
∗
j , then ‖P E∗

[1,k)Q
∗i∗z∗‖ <

εk and ‖P E∗

[ℓ,∞)Q
∗i∗z∗‖ < εℓ, and moreover the same holds if one passes to any blocking

of (F ∗
j ) and the corresponding blocking of (E∗

j ). Note that although the conditions of the
Johnson-Zippin lemma are not satisfied here, the proof is easily seen to apply because our
FDDs are boundedly complete, and the map Q∗i∗ is w∗ to w∗ continuous.

We now continue as in the proof of [12, Theorem 4.1(b)]: we replace F ∗
j by the quotient

space F̃j = i∗(F ∗
j ), we let Z̃ be the completion of c00(F̃j) w.r.t. the norm ||| · ||| as defined

in [12] and obtain a quotient map ι̃ : Z̃ → X∗. We note that the results corresponding to [12,
Proposition 4.9(b),(c)] are valid here as their proof does not require reflexivity (part (a) is
not required, and indeed neither valid, here).
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Finally, we find a blocking (G̃j) of (F̃j) and a subsequence V ∗
N = (v∗

ni
) of (v∗

i ) such that ι̃

is still a quotient map of Z̃V ∗

N (G̃) onto X∗ and it is still w∗ to w∗ continuous (note that (G̃j)

is boundedly complete in Z̃V ∗

N (G̃) by Proposition 2.8). Since (G̃j) satisfies subsequential V ∗
N

lower block estimates in Z̃V ∗

N (G̃), statement (5) will then follow by duality (after filling the

FDD as in the proof of the implication 1) ⇒ 4)). To find suitable G̃ and (ni) we now follow
the proof of [12, Theorem 4.1(b)] verbatim. The only comment we need to make is that [12,
Lemma 4.10] is valid since we are working with boundedly complete FDDs and w∗ to w∗

continuous maps.
Finally, since the missing implications (5)⇒(1) and (3)⇒(2) are trivial, we finished the

proof of the theorem. �

The proof of the following result is an adaptation of the proof Theorem 5.1 in [12] to the
non reflexive case.

Corollary 3.3. Let V = (vi) be a 1-unconditional, shrinking, block stable, and right dom-
inant normalized basic sequence. There is a Banach space Y with a shrinking FDD (Ei)
satisfying subsequential V upper block estimates such that if a Banach space X with separa-
ble dual has subsequential V upper tree estimates, then X embeds into Y .

Proof. By Schechtman’s result [14] there exists a space W with a bimonotone FDD E = (Ei)
with the property that any space X with bimonotone FDD F = (Fi) naturally almost
isometrically embeds into W , i.e. for any ε > 0 there is a (1+ε)-embedding T : X → W and
a sequence (ki) ∈ [N]ω, such that T (Fi) = Eki

, and moreover
∑

i P
E
ki

is a norm-1 projection
of W .

Since V ∗ is boundedly complete it follows from Proposition 2.8 that the sequence (E∗
i ) is

a boundedly complete FDD of the space (W (∗))V ∗

. It follows that (Ei) is a shrinking FDD of

the space Y =
(

(W (∗))V ∗
)(∗)

and that Y ∗ = (W (∗))V ∗

. We denote by ‖ · ‖W , ‖ · ‖W (∗), ‖ · ‖Y ,

‖ · ‖Y ∗ the norms in W , W (∗), Y and Y ∗, respectively.
By Proposition 2.8 (E∗

i ) satisfies subsequential V ∗ lower block estimates in (W (∗))V ∗

, and,
thus, by Proposition 2.2 (Ei) satisfies subsequential V upper block estimates in Y (recall
that Y (∗) = Y ∗ = (W (∗))V ∗

).
We now have to show that a space X with separable dual and with subsequential V

upper tree estimates embeds in Y . By Theorem 1.1 we can assume that X has a shrinking,
bimonotone FDD (Fi) satisfying subsequential V upper block estimates. By our choice of
W we can assume that X is the complemented subspace of W generated by a subsequence
(Eki

) of (Ei). We need to show that on X the norms ‖ · ‖W and ‖ · ‖Y are equivalent.
Let C ≥ 1 be chosen so that (vi) is C-block stable and C-right dominant (thus (v∗

i ) is
C-block stable and C-left dominant) and such that (E∗

ki
) satisfies subsequential C-V ∗ lower

block estimates in X∗. Let w∗ ∈ c00(⊕F ∗
i ) = c00(⊕E∗

ki
). Clearly, we have ‖w∗‖W (∗) ≤ ‖w∗‖Y ∗ .
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Choose 1 ≤ m0 < m1 < . . . such that

‖w∗‖Y ∗ =
∥

∥

∥

∞
∑

i=1

‖P E∗

[mi−1,mi)
(w∗)‖W (∗)v∗

mi−1

∥

∥

∥

V ∗

.

W.l.o.g we can assume that m0 = 1 and that P E∗

[mi−1,mi)
(w∗) 6= 0, for i ∈ N. Since w∗ ∈

c00(⊕E∗
ki

), we can choose j1 < j2 < . . . such that kji
= min suppP E∗

[mi−1,mi)
(w∗) and deduce

‖w∗‖Y ∗ =
∥

∥

∥

∞
∑

i=1

‖P E∗

[mi−1,mi)
(w∗)‖W (∗)v∗

mi−1

∥

∥

∥

V ∗

≤ C
∥

∥

∥

∞
∑

i=1

‖P E∗

[mi−1,mi)
(w∗)‖W (∗)v∗

kji

∥

∥

∥

V ∗

≤ C2
∥

∥

∥

∞
∑

i=1

‖P F ∗

[ji,ji+1)
(w∗)‖W (∗)v∗

ji

∥

∥

∥

V ∗

≤ C3‖w∗‖W (∗).

This proves that ‖ ·‖W (∗) and ‖ ·‖Y ∗ are equivalent on c00(⊕E∗
ki

). Since X is 1-complemented

in W , and X∗ is 1-complemented in W (∗) and since
∑

i P
E∗

ki
is still a norm-1 projection from

Y ∗ onto c00(⊕(Eki
))

Y ∗

it follows for any w ∈ c00(⊕Eki
) that 1

C3‖w‖W ≤ ‖w‖Y ≤ ‖w‖W ,
which finishes the proof of our claim. �

As an application of Theorem 1.1 we extend structural and universality results on classes
of bounded Szlenk index from the reflexive case studied in [13] to the non-reflexive case.

Corollary 3.4. Let α < ω1. For a space X with separable dual, the following are equivalent:

(i) X has Szlenk index at most ωαω,
(ii) X satisfies subsequential Tα,c upper tree estimates for some c ∈ (0, 1),
(iii) X embeds into a space Z with an FDD (Ei) which satisfies subsequential Tα,c upper

block estimates in Z for some c ∈ (0, 1).

Proof. The implication (i)⇒(ii) is proved in Corollary 19 and Theorem 21 of [13] (the reflex-
ivity assumption there is not used for the relevant implication). The implication (iii)⇒(i)
follows from [13, Propositon 17]. Finally, (ii)⇒(iii) follows from the implication (1)⇒(5) of
Theorem 1.1. �

Corollary 3.5. For each α < ω1 there exists a Banach space Zα with a shrinking FDD
and Szlenk index at most ωαω+1 such that Zα is universal for the collection of spaces with
separable dual and Szlenk index at most ωαω.

Proof. By Corollary 3.3 for all n ∈ N there exists a Banach space Xn with an FDD satisfying
subsequential Tα, n

n+1
upper block estimates which is universal for all Banach spaces with

separable dual which satisfy subsequential Tα, n
n+1

upper tree estimates. Let Zα = (
⊕

Xn)ℓ2 .
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We have that Zα is universal for the collection of spaces with separable dual and Szlenk
index at most ωαω by Corollary 3.4. The Szlenk index of Zα is at most ωαω+1 as proven in
[13]. �
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