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Abstract. We prove that a sequence (fi)
∞
i=1 of translates of a fixed f ∈ Lp(R) cannot

be an unconditional basis of Lp(R) for any 1 ≤ p < ∞. In contrast to this, for every

2 < p < ∞, d ∈ N and unbounded sequence (λn)n∈N ⊂ Rd we establish the existence of

a function f ∈ Lp(Rd) and sequence (g∗n)n∈N ⊂ L∗p(Rd) such that (Tλnf, g
∗
n)n∈N forms an

unconditional Schauder frame for Lp(Rd). In particular, there exists a Schauder frame of

integer translates for Lp(R) if (and only if) 2 < p <∞.

1. Introduction

If d ∈ N and λ ∈ Rd, the translation operator Tλ is defined by Tλf(x) = f(x − λ) for all

x ∈ Rd and f : Rd → Rd. Note that for the case d = 1 and λ > 0, the operator Tλ is simply

translation of f by λ units to the right. Given 1 ≤ p < ∞, f ∈ Lp(R), and Λ ⊂ R, the

resulting space Xp(f,Λ) ≡ span{Tλf}λ∈Λ and set {Tλf}λ∈Λ have been studied in a variety of

contexts and in particular arise in the study of wavelets and Gabor frames [HSWW, CDH].

Some of the natural problems to consider when studying translations of a fixed function

f relate to characterizing when can Xp(f,Λ) = Lp(Rd) and when can {Tλf}λ∈Λ be ordered

to form a coordinate system such as a (unconditional) Schauder basis or (unconditional)

Schauder frame for Lp(Rd). For d = 1, the cases when Λ = Z or Λ = N are of particular

interest. For 1 ≤ p ≤ 2, a Fourier transform argument yields that there does not exist an

f ∈ Lp(R) such that Xp(f,Z) = Lp(R) [AO]. On the other hand, for all {λn}n∈Z ⊂ R \ Z
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such that limn→±∞ |λn − n| = 0, there exists f ∈ L2(R) such that X2(f, (λn)n∈Z) = L2(R)

[O]. The case 2 < p <∞ is completely different, as for all 2 < p <∞ there exists f ∈ Lp(R)

such that Xp(f,Z) = Lp(R) and, moreover, Tmf 6∈ Xp(f,Z \ {m}) for all m ∈ Z [AO].

Suppose that f ∈ Lp(R) and that {Tλf : λ ∈ Λ} is an unconditional basic sequence

in Lp(R). What can be said about Xp(f,Λ)? Note that for a sequence (xj) in a Banach

space the property of being an unconditional basis does not depend on the order. We can

therefore index unconditional bases by any countable set, for example by the elements of

Λ, if we assume that {Tλf : λ ∈ Λ} is an unconditional basic sequence in Lp(R), which of

course implicitly includes the assumption that Λ is countable. In Section 2 we prove that if

(Tλf)λ∈Λ is an unconditional basic sequence in Lp(R) with 2 < p <∞ such that Xp(f,Λ) is

complemented in Lp(R) then (Tλf)λ∈Λ must be equivalent to the unit vector basis of `p. In

particular, Xp(f,Λ) 6= Lp(R). Together with results already proven in [OSSZ] for the case

1 ≤ p < 2 and [OZ] for p = 2, we will conclude for all 1 ≤ p < ∞ that there is no function

f ∈ Lp(R) and countable set Λ ⊂ R so that (Tλf : λ ∈ Λ) is an unconditional basis for

Lp(R).

In Section 3 we consider frames consisting of translates of a single function. By Wiener’s

famous Tauberian Theorem [Wi] it follows for an f ∈ L2(R) that X2(f,R) = L2(R) if and

only if the Fourier transform of f is almost everywhere non-zero. Thus, there are many

cases in which X2(f,Λ) = L2(R), but by [CDH, Section 4] there does not exist Λ ⊂ R and

f ∈ L2(R) such that {Tλf}λ∈Λ is a Hilbert frame for L2(R). In the special case that Λ ⊂ N

and f ∈ L2(R), then the sequence (Tλf)λ∈Λ is a Hilbert frame for X2(f,Λ) if and only if it is

a Riesz basis for X2(f,Λ), i.e., (Tλf) must be equivalent to the unit vector basis of `2 [CCK].

In Section 3 we provide some background on Schauder frames for Banach spaces and prove

that there exists a function f ∈ Lp(R) and sequence (g∗n)n∈N ⊂ L∗p(R) such that (Tnf, g
∗
n)n∈N

forms an unconditional Schauder frame for Lp(R) if (and thus, by the previously cited result

of [AO], only if) 2 < p < ∞. More generally, we prove that for every 2 < p < ∞, d ∈ N
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and unbounded sequence (λn)n∈N in Rd, there exists a function f ∈ Lp(Rd) and sequence

(g∗n)n∈N ⊂ L∗p(Rd) such that (Tλnf, g
∗
n)n∈N forms an unconditional Schauder frame for Lp(Rd).

For 2 < p < ∞, if Lp(R) embeds into Xp(f,Λ) and Xp(f,Λ) is complemented in Lp(R)

then (Tλf)λ∈Λ cannot be an unconditional basic sequence in Lp(R). However, we prove in

Section 4 that for 2 < p < ∞ there exists f ∈ Lp(R) and Λ ⊂ N so that Xp(f,Λ) is

isomorphic to Lp(R), Xp(f,Λ) is complemented in Lp(R), and {Tλf}λ∈Λ can be blocked to

form an unconditional finite-dimensional decomposition (FDD) for Xp(f,Λ).

In Section 5, we study the restriction operator RI : Lp(R) → Lp(I) given by x 7→ x|I

where I ⊂ R is some bounded interval. Assuming (Tλif) is an unconditional basic sequence,

we characterize for what values of 1 ≤ p < ∞ must the map RI : Xp(f, (λi)) → Lp(I) be

compact for all bounded intervals I ⊂ R. We prove as well other relationships between the

restriction operator RI : Xp(f, (λi)) → Lp(I) and the structure of Xp(f, (λi)). Lastly, in

Section 6 we state some open problems.

We thank the referee for his or her efforts which improved the paper considerably.

2. Unconditional bases of translates

The goal of this section is to prove for all 1 ≤ p < ∞ that Lp(R) does not have an

unconditional basis which consists of translates of the same function f ∈ Lp(R). Previously,

the problem had been solved for 1 ≤ p ≤ 4. For the case p = 2, this was first proved by Olson

and Zalik using tools from Harmonic Analysis [OZ, Theorem 2]. An extension to the range

1 ≤ p ≤ 2 was obtained in [OSSZ] using Banach space techniques. In [OSSZ, Corollary 2.10]

it was shown that if 1 ≤ p ≤ 2, and if f ∈ Lp(R) and Λ ⊂ R is such that (Tλf)λ∈Λ forms

an unconditional basic sequence, then (Tλf)λ∈Λ is equivalent to the `p unit vector basis. For

1 ≤ p < 2, this immediately implies that Xp(f,Λ) 6= Lp(R). For p = 2, Proposition 5.1

below (which is extracted from the proof of [OSSZ, Proposition 2.6(a)]) gives the theorem

of Olson and Zalik as an immediate corollary. In the case that 2 < p ≤ 4, it was shown
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in [OSSZ, Theorem 2.11] that the closed linear span of an unconditional basic sequence

consisting of translates of some f ∈ Lp(R) must embed into `p, and can therefore not be

isomorphic to Lp(R). However, this approach breaks down for 4 < p < ∞. Indeed [OSSZ,

Theorem 2.14] states that for any 4 < p < ∞ there is a function f ∈ Lp(R) and a subset

Λ ⊂ Z so that (Tλf)λ∈Λ is an unconditional basic sequence whose closed linear span contains

a subspace isomorphic to Lp(R).

Theorem 2.1. Let 2 < p < ∞, f ∈ Lp(R) and Λ ⊂ R countable. If (Tλf : λ ∈ Λ) is an

unconditional basis of Xp(f,Λ) and Xp(f,Λ) is complemented in Lp(R), then (Tλf)λ∈Λ is

equivalent to the unit vector basis of `p.

We will need the following result from [JO].

Proposition 2.2. [JO, Section 3, Lemma 2]. Let 1 ≤ q ≤ 2. Let (gi) ⊂ Lq(R) be semi-

normalized and unconditional basic. Assume that for some ε > 0 there exists a sequence of

disjoint measurable sets (Bi)
∞
i=1 with ‖gi|Bi

‖q ≥ ε for all i. Then (gi)
∞
i=1 is equivalent to the

unit vector basis of `q.

Proof of Theorem 2.1. Let Λ be ordered into (λi)i∈N. Put fi = Tλif , for i ∈ N, and X =

Xp(f,Λ). Without loss of generality we can assume that ‖fi‖p = ‖f‖p = 1 for all i ∈ N.

Denote the biorthogonals of (fi) inside X∗ by (gi), and let P : Lp(R) → X be a bounded

projection. Thus, P ∗ : X∗ → Lp(R)∗ is an isomorphic embedding. Let gi = P ∗gi for i∈N.

Recall that if {Tλf : λ ∈ Λ} can be ordered into a basic sequence in Lp(R) for some

f ∈ Lp(R) and Λ ⊂ R, then Λ is uniformly discrete [OZ, Theorem 1]. Hence we may choose

δ > 0 such that

(1) 0 < δ < inf{|λ− µ| : λ, µ ∈ Λ, λ 6= µ}.

For j ∈ Z, we define the interval Ij = [jδ, (j + 1)δ).
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Claim. There exist N ∈ N, ε > 0, and a sequence of distinct integers (li)
∞
i=1 such that for

all i ∈ N there exists ji ∈ {li, li + 1, . . . , li+N} with
∥∥gi|Iji∥∥q > ε.

Indeed, choose first l0 ∈ Z and N ∈ N so that

‖f |R\⋃l0+N−1
j=l0

Ij
‖pp =

∫ l0δ

−∞

∣∣f(z)
∣∣pdz +

∫ ∞
(l0+N)δ

∣∣f(z)
∣∣pdz < 1

2p

(
sup
i∈N
‖gi‖pq

)−1

Then for i ∈ N choose li ∈ Z such that

l0δ ≤ (li + 1)δ − λi < (l0 + 1)δ.

Note if i 6= i′, then by (1) |λi − λi′| > δ, and, thus li 6= li′ . Moreover,

‖fi|R\⋃li+N

j=li
Ij
‖pp =

∫ liδ

−∞

∣∣f(x− λi)
∣∣pdx+

∫ ∞
(li+N+1)δ

∣∣f(x− λi)
∣∣pdx

=

∫ liδ−λi

−∞

∣∣f(z)
∣∣pdz +

∫ ∞
(li+N+1)δ−λi

∣∣f(z)
∣∣pdz

≤
∫ l0δ

−∞

∣∣f(z)
∣∣pdz +

∫ ∞
(l0+N)δ

∣∣f(z)
∣∣pdz < 1

2p

(
sup
i∈N
‖gi‖pq

)−1

.

Thus, by Hölder’s Theorem and the fact that ‖f‖p = 1, it follows that∥∥gi|⋃li+N

j=li
Ij

∥∥
q
≥
∫
⋃li+N

j=li
Ij

gifidz = 1−
∫
R\

⋃li+N

j=li
Ij

gifi ≥ 1−
∥∥gi∥∥q∥∥f |R\⋃li+N

j=li
Ij

∥∥
p
≥ 1

2
.

Letting ε = 1
2(N+1)

we deduce our claim.

Since the li’s are distinct, it follows that for each k ∈ Z∣∣{i ∈ N : ji = k}
∣∣ ≤ ∣∣{i : k ∈ [li, li +N ]}

∣∣ =
∣∣{i : li ∈ [k −N, k]}

∣∣ ≤ N + 1 .

We can therefore partition N into infinite sets K1, K2, . . . , Km, with m ≤ N + 1, so that for

each s = 1, 2 . . .m the sequence (ji)i∈Ks consists of distinct integers.

For each s ≤ m it follows that the sequence (gi)i∈Ks , satisfies the condition of Proposition

2.2, with Bi = Iji , for i ∈ Ks, and must therefore be equivalent to the unit vector basis

of `q. Thus, since span{gi}i∈N is the direct sum of [gi : i ∈ Ks], s = 1, 2, . . .m, it follows

that (gi)i∈N must be equivalent to the unit vector basis of `q. Since P ∗ : X∗ → Lp(R)∗ is
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an isomorphic embedding and P ∗(gi) = gi for all i ∈ N, it follows that (gi) is equivalent to

(gi) and, thus, also equivalent to the unit vector basis of `q. But this implies that (fi) is

equivalent to the unit vector basis of `p. �

Using now the results in [OSSZ] cited at the beginning of this section we conclude the

following.

Corollary 2.3. If f ∈ Lp(R), 1 ≤ p < ∞, and (Tλf)λ∈Λ is an unconditional basis for

Xp(f,Λ), then Xp(f,Λ) 6= Lp(R).

Moreover, if (Tλf)λ∈Λ is unconditional and Xp(f, λ) is complemented in Lp(R), then it

must be equivalent to the `p unit vector basis.

3. Unconditional Schauder frames of translates

In Section 2, it was shown that for any value of p, 1 ≤ p < ∞, there does not exist an

unconditional basis for Lp(R) consisting of translates of a single function. In contrast to this,

we will show that there does exist an unconditional Schauder frame for Lp(R) consisting of

integer translates of a single function if and only if 2 < p < ∞. Before proving this result,

we will develop some basic theory of Schauder frames.

If X is a separable Banach space, then a sequence (xi, g
∗
i )
∞
i=1 ⊂ X×X∗ is called a Schauder

frame for X if

(2) x =
∞∑
i=1

g∗i (x)xi for all x ∈ X.

A Schauder frame (xi, g
∗
i )
∞
i=1 ⊂ X × X∗ is called an unconditional Schauder frame for X

if the series (2) converges unconditionally for all x ∈ X. Recall that a series converges

unconditionally if it converges for any ordering of the elements of the series.

Let X be a separable Banach space. Assume that a sequence (xi, g
∗
i )
∞
i=1 ⊂ X × X∗

satisfies that the operator S : X → X defined by S(x) =
∑∞

i=1 g
∗
i (x)xi is well defined (and

hence bounded due to the uniform boundedness principle). S is called the frame operator for
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(xi, g
∗
i )
∞
i=1. Note that the sequence (xi, g

∗
i )
∞
i=1 ⊂ X×X∗ is a Schauder frame if and only if the

frame operator is the identity. We define (xi, g
∗
i )
∞
i=1 to be an approximate Schauder frame if

the frame operator is bounded, one to one, and onto (hence has bounded inverse)[T], and we

define (xi, g
∗
i )
∞
i=1 to be an unconditional approximate Schauder frame if it is an approximate

Schauder frame and the series
∑∞

i=1 g
∗
i (x)xi converges unconditionally for all x ∈ X.

Lemma 3.1. Let X be a separable Banach space and let (xi, g
∗
i )
∞
i=1 ⊂ X ×X∗ be an approx-

imate Schauder frame for X with frame operator S. Then (xi, (S
−1)∗g∗i )

∞
i=1 is a Schauder

frame for X. Furthermore, if (xi, g
∗
i )
∞
i=1 is an unconditional approximate Schauder frame for

X, then (xi, (S
−1)∗g∗i )

∞
i=1 is an unconditional Schauder frame for X.

Proof. Let x ∈ X. We have that S and S−1 are bounded. Thus,

x = S(S−1x) =
∞∑
i=1

g∗i (S
−1x)xi =

∞∑
i=1

((S−1)∗g∗i )(x)xi.

Hence, (xi, (S
−1)∗g∗i )

∞
i=1 ⊂ X × X∗ is a Schauder frame for X. Furthermore, the series∑∞

i=1 g
∗
i (S

−1x)xi converges unconditionally if (xi, g
∗
i )
∞
i=1 is an unconditional approximate

Schauder frame for X, and thus (xi, (S
−1)∗g∗i )

∞
i=1 is then an unconditional Schauder frame

for X. �

In particular, Lemma 3.1 implies that Lp(Rd) has a (unconditional) Schauder frame formed

by translating a single function if and only if it has an (unconditional) approximate Schauder

frame formed by translating a single function. This is important for us, as we will provide

an explicit construction for an unconditional approximate Schauder frame of translates for

Lp(Rd) and then apply Lemma 3.1 to obtain an unconditional Schauder frame of translates

for Lp(Rd) for any p > 2.

Theorem 3.2. Let 2 < p <∞ and d ∈ N. If (λn)n∈N is an unbounded sequence in Rd then

there exists a function f ∈ Lp(Rd) and a sequence (g∗n)n∈N ⊂ L∗p(Rd) such that (Tλnf, g
∗
n)n∈N

forms an unconditional Schauder frame for Lp(Rd).
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Proof. By Lemma 3.1 it is enough to construct an unconditional approximate Schauder frame

of Lp(Rd) which is of the form (Tλnf, g
∗
n)n∈N. Also, it is enough to construct for some infinite

subsequence (λm)m∈M ⊂ (λn) a function f ∈ Lp(Rd) and a sequence (g∗m)m∈M ⊂ L∗p(Rd) so

that (Tλmf, g
∗
m)m∈M is an unconditional approximate Schauder frame of Lp(Rd). Indeed, by

letting g∗n ≡ 0 in the case that n ∈ N \M , it follows that the sequence (Tλnf, g
∗
n)n∈N is also

an unconditional approximate Schauder frame of Lp(Rd).

Let (ei)
∞
i=1 be a normalized unconditional Schauder basis for Lp(Rd) with biorthogonal

functionals (e∗i )
∞
i=1 such that ei ∈ Lp(Rd) is a function satisfying diam(supp(ei)) ≤ 1 for

all i ∈ N, where the diameter is measured in the Euclidean norm ‖ · ‖2 on Rd. Let Cu

be the constant of unconditionality of (ei)
∞
i=1. For each k ∈ N, choose Nk ∈ N such that(∑∞

k=1N
1−p/2
k

)1/p
< 1

2Cu
.

As (λn)n∈N is unbounded, we may choose j
(1)
1 < j

(1)
2 < . . . < j

(1)
N1

< j
(2)
1 < . . . < j

(2)
N2

< . . .

to increase rapidly enough so that ‖λ
j
(1)
1
‖2 > 1 and for all k ∈ N and 1 ≤ s ≤ Nk,

‖λ
j
(k)
s
‖2 > 3 max{‖λ

j
(k′)
s′
‖2 : j

(k′)
s′ < j(k)

s }+ 2 max{‖x‖2 : x ∈ supp(ej), 1 ≤ j ≤ k}.(3)

We let Jk = {j(k)
s : 1 ≤ s ≤ Nk}, for k ∈ N, and if j ∈ Jk, for some k ∈ N, we put kj = k.

Thus J1, J2, . . . are pairwise disjoint subsets of N with |Jk| = Nk. After checking the separate

cases, one obtains the following from (3), ‖λ
j
(1)
1
‖2 > 1, and diam(supp(ei)) ≤ 1 for all i ∈ N.

supp(Tλi−λj(ekj)) ∩ supp(Tλi′−λj′ (ekj′ )) = ∅(4)

whenever i, j, i′, j′ ∈
∞⋃
l=1

Jl, with i 6= j, i′ 6= j′, and (i, j) 6= (i′, j′).

Note that the case i = i′ in (4) reduces to

(5) supp(T−λjekj) ∩ supp(T−λj′ekj′ ) = ∅ for all distinct j, j′ ∈
∞⋃
l=1

Jl.
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We define our function f by

f :=
∞∑
k=1

∑
j∈Jk

N
−1/2
k T−λjek.

Our first step is to show that f ∈ Lp(Rd).∫
|f |p dµ =

∫ ∣∣∣ ∞∑
k=1

∑
j∈Jk

N
−1/2
k T−λjek

∣∣∣p dµ

=
∞∑
k=1

Nk∑
i=1

N
−p/2
k

∫
|ek|p dµ by (5)

=
∞∑
k=1

N
1−p/2
k as ‖ek‖ = 1 for all k ∈ N

<
1

2pCp
u
.

Thus we have that f ∈ Lp(Rd). For each j ∈ N, we define g∗j ∈ L∗p(Rd) by

g∗j =


N
−1/2
k e∗k if j ∈ Jk for some k ∈ N,

0 otherwise.

We note that for any finite A ⊂ N and any h ∈ Lp(Rd), with ‖h‖p ≤ 1,

∑
j∈A

g∗j (h)Tλj(f) =
∞∑
k=1

∑
i∈Jk∩A

N
−1/2
k e∗k(h)Tλi(f)(6)

=
∞∑
k=1

∑
i∈Jk∩A

N
−1/2
k e∗k(h)

∞∑
l=1

∑
j∈Jl

N
−1/2
l Tλi−λjel

=
∞∑
k=1

∑
i∈Jk∩A

N−1
k e∗k(h)ek +

∞∑
k, l=1

∑
i∈Jk∩A

∑
j∈Jl,j 6=i

N
−1/2
k N

−1/2
l e∗k(h)Tλi−λjel

=: hA + rA.

In order to show that
∑∞

i=1 g
∗
i (h)Tλif converges unconditionally we let ε > 0 and choose

M ∈ N such that ‖
∑∞

i=M e∗i (h)ei‖ < ε/Cu and
∑∞

k=M N
1−p/2
k < εp. Let A ⊂ N such that
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min(A) ≥ j
(M)
1 . Then it follows that ‖hA‖ ≤ ε and (4) yields

‖rA‖ =
∥∥∥ ∞∑
k, l=1

∑
i∈Jk∩A

∑
j∈Jl,j 6=i

N
−1/2
k N

−1/2
l e∗k(h)Tλi−λjel

∥∥∥
p

=

(
∞∑

k, l=1

∑
i∈Jk∩A

∑
j∈Jl,j 6=i

N
−p/2
k N

−p/2
l |e∗k(h)|p

)1/p

≤ Cu

( ∞∑
k=M

N
1−p/2
k

∞∑
l=1

N
1−p/2
l

)1/p

≤ ε/2

(Recall that |Jk|=Nk, (
∑∞

l=1N
1−p/2
l )1/p≤ 1

2Cu
, and |e∗k(h)| ≤ Cu‖h‖≤Cu, for k∈N).

Since ε > 0 was arbitrary this implies our claim that the series
∑∞

i=1 g
∗
i (h)Tλif converges

unconditionally. We can therefore let A = N in (6) and note that hN = h, and then the

previous estimations yield that∥∥∥h−∑
j∈N

g∗j (h)Tλj(f)
∥∥∥
p

= ‖rA‖p ≤ Cu

( ∞∑
k=1

N
1−p/2
k

)2/p

<
1

4
,

which implies that the frame operator is invertible and, thus, that (Tλjf, g
∗
j ) is an approxi-

mate unconditional Schauder frame and finishes the proof. �

We now discuss some consequences of Theorem 3.2. Given a Schauder frame (xi, fi)
∞
i=1 ⊂

X×X∗, let Hn : X → X be the operator Hn(x) =
∑

i≥n fi(x)xi. A Schauder frame (xi, fi)
∞
i=1

is called shrinking if ‖x∗ ◦Hn‖ → 0 for all x∗ ∈ X∗. A Schauder frame (xi, fi)
∞
i=1 ⊂ X ×X∗

for a Banach space X is shrinking if and only if (fi, xi)
∞
i=1 ⊂ X∗ ×X∗∗ is a Schauder frame

for X∗ [CL]. Furthermore, every unconditional Schauder frame for a reflexive Banach space

is shrinking [CLS, L]. Thus the following corollary of Theorem 3.2 ensues.

Corollary 3.3. Let 1 < q < 2 and d ∈ N. If (λn)n∈N ⊂ Rd is unbounded then there exists

a function f ∗ ∈ L∗q(Rd) and sequence (gn)n∈N ⊂ Lq(Rd) such that (gn, Tλnf
∗)n∈N forms an

unconditional Schauder frame for Lq(Rd).



UNCONDITIONAL STRUCTURES OF TRANSLATES FOR Lp(Rd) 11

Note that in Corollary 3.3, the dual functionals (Tλnf
∗)n∈N are translations of a single

function as opposed to the vectors (gn)n∈N.

4. Unconditional FDDs of translates

In Section 2, it was shown that for all f ∈ Lp(R), 1 ≤ p < ∞, and Λ ⊂ R, if (Tλf)λ∈Λ

is an unconditional basic sequence and Xp(f,Λ) is complemented in Lp(R) then (Tλf)λ∈Λ

is equivalent to the unit vector basis for `p. Instead of considering when (Tλf)λ∈Λ is an

unconditional basic sequence, we now study the cases where (Tλf)λ∈Λ can be blocked into

an unconditional FDD. Given a Banach space X, recall that a sequence of finite dimensional

spaces (Fi)
∞
i=1 ⊂ X is called a finite dimensional decomposition or FDD for X if for every

x ∈ X there exists for all i ∈ N a unique xi ∈ Fi such that x =
∑∞

i=1 xi. An FDD is called

unconditional if the series x =
∑∞

i=1 xi converges unconditionally for all x ∈ X.

Theorem 4.1. Let 2 < p < ∞. There exists f ∈ Lp(R) and a subsequence (ni)
∞
i=1 of N

so that for X = Xp(f, (−ni)∞i=1), i) X is isomorphic to Lp(R), ii) X is complemented in

Lp(R), and iii) there exists a partition of N into successive intervals (Jj)
∞
j=1 so that setting

Fj = span{T−ni
f}i∈Jj , (Fj)

∞
j=1 forms an unconditional FDD for X.

Proof of Theorem 4.1. Let ε ∈ (0, 1) and choose a subsequence (Nk)
∞
k=1 of N so that N1 ≥ 4

and

(7)
∞∑
k=1

N
1
p
− 1

2

k < ε and hence
∞∑
k=1

N
1− p

2
k < 1 .

Let (hij)
∞
j=1 be the normalized Haar basis for Lp[3

i, 3i + 1] for i ∈ N. Partition N into

successive intervals J1, J2, . . . so that |Jk| = Nk for j ∈ N.

Let

f =
∞∑
k=1

∑
i∈Jk

1√
Nk

hik and let fi = T−3if , i ∈ N .
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Then f ∈ Lp(R) since

‖f‖pp =
∞∑
k=1

∑
i∈Jk

( 1√
Nk

)p
=
∞∑
k=1

Nk

( 1√
Nk

)p
=
∞∑
k=1

N
1− p

2
k ≤ 1 (by (7)).

The choice of 3i above yields, as in Section 3, that for k ∈ N and i ∈ Jk, fi is of the form

(8) fi =
1√
Nk

hk + gi

where (hk) is the normalized Haar basis for Lp[0, 1], and the gi are bounded in norm by 1 and

have supports that are pairwise disjoint and also disjoint from [0, 1]. The latter fact follows

since supp gi ⊂
⋃∞
l=1,`6=i[3

`−3i , 3` − 3i+1] for all i∈N. Thus, {hk : k∈N} ∪ {gi : i∈N} is

an unconditional basis of its closed linear span Y , and hence statement (iii) of the theorem

follows at once with ni = 3i for each i ∈ N and with Jk as defined above. Moreover, Y

is 1-complemented in Lp(R), so in order to show that X, the closed linear span of (fi), is

complemented in Lp(R), it is enough to show that X is complemented in Y .

We denote the biorthogonals of {hk : k∈N}∪{gi : i∈N} in Y ∗ by {h∗k : k∈N}∪{g∗i : i∈N}

and define

f ∗j =
1√
Nk

h∗k + g∗j −
1

Nk

∑
i∈Jk

g∗i , for k ∈ N and j ∈ Jk.

It follows for k, l ∈ N, i ∈ Jk, and j ∈ Jl that

f ∗j (fi) =
1

Nk

δ(k,l) + δ(i,j) −
1

Nl

δ(k,l) = δ(i,j).

We define P (y) =
∑

j∈N f
∗
j (y)fj for y ∈ Y , and need to show that P is bounded. For

y =
∑∞

l=1 alhl +
∑∞

l=1

∑
i∈Jl bigi ∈ Y , and numbers k ∈ N and j ∈ Jk we compute

f ∗j (y) =
ak√
Nk

+ bj −
1

Nk

∑
i∈Jk

bi.

It follows therefore that P (y) is the sum of the following four terms:

∞∑
k=1

∑
j∈Jk

ak√
Nk

hk√
Nk

=
∞∑
k=1

akhk,
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∞∑
k=1

∑
j∈Jk

(
bj −

1

Nk

∑
i∈Jk

bi

) hk√
Nk

=
∞∑
k=1

(∑
j∈Jk

bj −
∑
i∈Jk

bi

) hk√
Nk

= 0,

∑
k∈N

∑
j∈Jk

ak√
Nk

gj,

∑
k∈N

∑
j∈Jk

(
bj −

1

Nk

∑
i∈Jk

bi

)
gj.

The norm of the first term is bounded by ‖y‖, and for the third term it follows from the

pairwise disjointness of the supports of the gj that

∥∥∥∑
k∈N

∑
j∈Jk

ak√
Nk

gj

∥∥∥
p
≤
( ∞∑
k=1

N
1−p/2
k |ak|p

)1/p

sup
j∈N
‖gj‖p ≤

( ∞∑
k=1

N
1−p/2
k

)1/p

sup
k
|ak| ≤ sup

k
|ak|

and finally, using again the disjointness of the support of the gj, the fourth term can be

estimated as follows:

∥∥∥∑
k∈N

∑
j∈Jk

(
bj −

1

Nk

∑
i∈Jk

bi

)
gj

∥∥∥ ≤ ∥∥∥∑
k∈N

∑
j∈Jk

bjgj

∥∥∥+
∥∥∥∑
k∈N

∑
j∈Jk

( 1

Nk

∑
i∈Jk

|bi|
)
gj

∥∥∥
=
( ∞∑
j=1

|bj|p‖gj‖p
)1/p

+

(∑
k∈N

( 1

Nk

∑
i∈Jk

|bi|
)p∑

j∈Jk

‖gj‖p
)1/p

≤ ‖y‖+

(∑
k∈N

N1−p
k

(∑
i∈Jk

|bi|
)p)1/p

≤ ‖y‖+
(∑
k∈N

N1−p
k Np−1

k

∑
i∈Jk

|bi|p
)1/p

≤ 3‖y‖.

The last inequality uses that ‖gj‖p ≥ 1
2

for all j ∈ N, which follows from (8) and the fact

that N1 ≥ 4. This shows that P is a bounded projection from Y onto X. This completes

the proof of statement (ii) of the theorem. Finally, consider

h̄k =
1√
Nk

∑
j∈Jk

fj = hk +
1√
Nk

∑
j∈Jk

gj (by (8)).
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Then for k ∈ N we have

‖h̄k − hk‖ =
∥∥∥ 1√

Nk

∑
j∈Jk

gj

∥∥∥
p

=
1√
Nk

(∑
j∈Jk

‖gj‖pp
)1/p

≤ N
1
p
− 1

2

k ‖f‖p , (since ‖gj‖p ≤ ‖f‖p).

It follows from (7) and from the Small Perturbation Lemma (c.f [FHHMPZ, Theorem 6.18])

that, for ε sufficiently small, (h̄k) is equivalent to (hk), and so Lp(R) embeds into X. Since the

closed linear span of (hk) (naturally embedded in Lp(R)) is complemented in Y , it also follows

from the Small Perturbation Lemma that, for small enough ε > 0, the closed linear span of

(hk) is complemented in Y and thus also complemented in X. Thus, Lp(R) is isomorphic to a

complemented subspace of X and X is a complemented subspace of Lp(R). By Pe lczyński’s

decomposition method (cf. [LT, Remarks after Theorem 2.a.3]) X is therefore isomorphic

to Lp(R). �

5. Compactness of restriction operators

Let 1 ≤ p < ∞ and let X be a subspace of Lp(R) generated by translates of a single

function in Lp(R). In this section we consider when the restriction operators RI : X → Lp(I),

x 7−→ x|I , are compact for bounded intervals I, and what this tells us about the structure

of X. The first three results can essentially be extracted from [OSSZ]; the presentation here

simplifies some of their arguments. The last two results, Propositions 5.4 and 5.5, are new

and they demonstrate yet again that in the range 2 < p <∞ a richer structure is possible.

In the case where (Tλif)∞i=1 is an unconditional basic sequence of translates of some f ∈

Lp(R), 1 ≤ p ≤ 2, the space Xp(f, (λi)) must be quite thin as the next proposition reveals.

Proposition 5.1. Let (λi)
∞
i=1 ⊂ R and f ∈ Lp(R), 1 ≤ p ≤ 2. Let fi = Tλif for i ∈ N, and

assume that (fi) is unconditional basic. Let I ⊂ R be a bounded interval and X = Xp(f, (λi)).

Then the map RI : X → Lp(I), x 7−→ x|I , is a compact operator.

Proof. For p = 1 this follows by the proof of [OSSZ, Corollary 2.4]. In fact this holds under

the assumption that (fi) is basic (and even less).
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Suppose that 1 < p ≤ 2 and ε > 0. Since
∑∞

i=1 ‖fi|I‖pp <∞ (see [OSSZ, Proposition 2.1]),

there exists N ∈ N so that (
∑∞

i=N ‖fi|I‖p)1/p < ε. Let x =
∑∞

i=N aifi, ‖x‖p = 1. Then

‖x|I‖ ≤
∞∑
i=N

|ai| ‖fi|I‖ ≤
( ∞∑
i=N

|ai|q
)1/q( ∞∑

i=N

‖fi|I‖pp
)1/p

by Hölder’s inequality (1
p

+ 1
q

= 1). Since q ≥ 2, (
∑∞

i=N |ai|q)1/q ≤ (
∑∞

i=N |ai|2)1/2. Further-

more, by the unconditionality of (fi), there exists a constant K so that( ∞∑
i=1

|ai|2
)1/2

≤ K‖x‖ = K .

K depends only on p, the unconditionality constant of (fi) and ‖f‖ = ‖fi‖ for i ∈ N. Thus

‖x|I‖ ≤ Kε. This proves that RI is a compact operator on X. �

We will show in Proposition 5.4 below that Proposition 5.1 fails for p > 2. However, in

the range 2 < p ≤ 4 we have the following result whose proof can be extracted from the

proof of [OSSZ, Theorem 2.11].

Proposition 5.2. Let (λi)
∞
i=1 ⊂ R and f ∈ Lp(R), 2 < p ≤ 4. Let fi = Tλif be such that (fi)

is unconditional basic. Then there is a basic sequence (gi) in Lp(R) equivalent to (fi) such

that, for Y = span{gi : i ∈ N} and any bounded interval I ⊂ R, the map RI : Y → Lp(I),

y 7−→ y|I , is a compact operator.

Proof. Let (hj) be the normalized Haar basis for Lp[0, 1]. For i ∈ Z and j ∈ N let hij be hj

translated to [i, i+ 1]. Thus (hij) is a normalized unconditional basis of Lp(R).

By approximating each fi by a simple dyadic function we find a seminormalized block

basis (gi) of (hij) such that

(9)
∞∑
i=1

∥∥ |fi| − |gi| ∥∥p <∞ .

By a very useful observation of Schechtman [S] it follows that (fi) is equivalent to (gi).
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Set Y = span{gi : i ∈ N} and let I be a bounded interval. To show that RI : Y → Lp(I) is

compact we can assume that I = [−M,M ] for some M ∈ N. It follows from (9) and [OSSZ,

Proposition 2.1] that
∑∞

i=1 ‖gi|I‖pp <∞. Fix ε > 0 and choose N with

(10)
∞∑
i=N

‖gi|I‖pp < ε .

We note that (gi|I) is a block basis of (hij)(j∈N, −M≤i<M) (after omitting zero vectors), and thus

it is unconditional basic. Let y =
∑∞

i=N aigi ∈ Y . Recalling that for p > 2, seminormalized

unconditional basic sequences in Lp(R) satisfy lower `p and upper `2 estimates, we obtain

the following inequalities with some constant C (dependent only on p and the norm of f).

‖y|I‖p =
∥∥∥ ∞∑
i=N

aigi|I
∥∥∥
p
≤ C

( ∞∑
i=N

|ai|2‖gi|I‖2
p

)1/2

≤ C‖(ai)∞i=N‖`p
( ∞∑
i=N

‖gi|I‖
2p
p−2
p

) p−2
2p

(using Hölder’s inequality with p
2

and p
p−2

)

≤ C2‖y‖p
( ∞∑
i=N

‖gi|I‖pp
)1/p

≤ C2ε1/p‖y‖p (using 2 < p ≤ 4 so 2p
p−2
≥ p) .

This completes the proof. �

It is worth noting that when the operators RI on some subspace X ⊂ Lp(R) are compact

for all bounded intervals I then X must embed into `p in a natural way as the next propo-

sition reveals. This observation and Proposition 5.1 and 5.2 above simplify some arguments

in [OSSZ].

If P is a partition of R into bounded intervals (Ij) we let EP denote the conditional

expectation operator on Lp(R) given by

EP (f) =
∞∑
k=1

∫
Ik

f(ξ)dξ
χIk
m(Ik)

.

Proposition 5.3. Let X be a subspace of Lp(R), 1 ≤ p < ∞. If for all bounded intervals

I ⊂ R the operator RI : X → Lp(I), x 7→ x|I is compact, then for all ε > 0 there exists a
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partition P of R into bounded intervals so that for all x ∈ SX , ‖x − EP (x)‖ < ε. Thus X

embeds into `p.

Proof. Let ε > 0. For n ∈ N let Qn be the set of dyadic intervals of length 2−n in [0, 1), i.e.

Qn =
{

[0, 2−n), [2−n, 21−n), . . . [1− 2−n, 1)
}
.

Then EQn converges in the strong operator topology to the identity on Lp[0, 1] and therefore

there exists for every relatively compact set K ⊂ Lp[0, 1) and every δ > 0 a large enough

k ∈ N so that for all x ∈ K, ‖x − EQk
(x)‖ < ε. Choose a sequence (εn) ⊂ (0, 1), with∑

εn < ε and for each n choose a dyadic partition Pn of the interval [n, n + 1) so that for

all x ∈ SX , ‖x|[n,n+1) − EPn(x|[n,n+1))‖ ≤ εn.

By taking P to be the union of all Pn we deduce our claim. �

Proposition 5.1 fails in the case 2 < p ≤ 4, and of course for p > 4 as well, as shown by

the next proposition.

Proposition 5.4. Let 2 < p < ∞. There exists f ∈ Lp(R) and (λi)
∞
i=1 ⊂ N so that for

fi = T−λif , (fi)
∞
i=1 is equivalent to the unit vector basis of `p, and letting I = [0, 1] and

RI : Xp(f, (−λi))→ Lp(I), x 7→ x|I , RI is not a compact operator.

Proof. Let 1
p

+ 1
q

= 1 and let (Nj)
∞
j=1 be a subsequence of N satisfying

∑∞
j=1 N

q−p
j <∞. Set

mj as the least integer greater than N q
j for j ∈ N and let (xj)

∞
j=1 be a normalized sequence

of disjointly supported elements in Lp(I). Let (Jj)
∞
j=1 be a partition of N into successive

intervals so that |Jj| = mj for all j.

For i ∈ Jj, let xij be xj placed on the interval [3i, 3i + 1] by right translation of 3i units.

Define

f =
∞∑
j=1

∑
i∈Jj

1

Nj

xij .



18 D. FREEMAN, E. ODELL, TH. SCHLUMPRECHT, AND A. ZSÁK

Note that

‖f‖pp =
∥∥∥ ∞∑
j=1

∑
i∈Jj

1

Nj

xij

∥∥∥p
p

=
∞∑
j=1

mj
1

Np
j

≤ 2
∞∑
j=1

N q
j

Np
j

<∞

so f ∈ Lp(R).

Setting fi = T−3if , for i ∈ N, we have, as in the proof of Theorem 4.1,

(11) fi =
1

Nj

xj + gi , for i ∈ Jj ,

where the gi’s are disjointly supported, seminormalized and with supports disjoint from I.

Therefore (gi) is equivalent to the unit vector basis of `p. Thus, to see that (fi) is equivalent

to the unit vector basis of `p it is sufficient to prove that for all (ai)
∞
i=1 ∈ `p,

(12)
∥∥∥ ∞∑
i=1

aifi
∣∣
I

∥∥∥
p
≤ 2

( ∞∑
i=1

|ai|p
)1/p

.

First note that for j ∈ N,

1

Nj

∣∣∣∑
i∈Jj

ai

∣∣∣ ≤ 1

Nj

(∑
i∈Jj

|ai|p
)1/p

m
1/q
j ≤ 2

(∑
i∈Jj

|ai|p
)1/p

.

Hence ∥∥∥ ∞∑
i=1

aifi
∣∣
I

∥∥∥p
p

=
∥∥∥ ∞∑
j=1

∑
i∈Jj

ai
1

Nj

xj

∥∥∥p
p

=
∞∑
j=1

∣∣∣∑
i∈Jj

ai
1

Nj

∣∣∣p ≤ 2p
∞∑
i=1

|ai|p ,

which proves (12).

To see that RI is not compact, define yj =
∑

i∈Jj fi. Then ‖yj‖ is of the order m
1/p
j and

‖yj|I‖ = ‖
∑

i∈Jj
1
Nj
xj‖ =

mj

Nj
≥ mj

m
1/q
j

= m
1/p
j . Thus m

−1/p
j yj is seminormalized and weakly

null in Lp(R), but ‖RIm
−1/p
j yj‖p ≥ 1 for all j. �

Using much the same argument we have

Proposition 5.5. Let 2 < p <∞. There exists f ∈ Lp(R) and translations of f , fi = T−3if ,

i ∈ N, so that

i) (fi) is basic,

ii) Lp(R) embeds isomorphically into Xp(f, (−3i)),
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iii) (fi) can be blocked into an unconditional FDD.

Sketch. Let (hj) be the normalized Haar basis for Lp[0, 1]. For i, j ∈ N, let hij be hj translated

to [3i, 3i + 1]. Set f =
∑

j

∑
i∈Jj

1
Nj
hij where (Jj) is a partition of N into successive intervals

and mj = |Jj| is the least integer greater than N q
j , for j ∈N. As above fi = 1

Nj
hj + gi, for

i ∈ Jj, where (gi) is seminormalized and disjointly supported in R \ [0, 1].

If yj =
∑

i∈Jj fi, it follows that m
−1/p
j yj ≈ hj + ej where (ej) is seminormalized and

disjointly supported in R \ [0, 1]. Since (hj) admits a lower `p-estimate, it follows that

(hj + ej) is equivalent to (hj), proving ii).

Set Fj = span{fi : i ∈ Jj} and note that Fj ⊂ F̃j = span{hj, (gi)i∈Jj}. Since (F̃j) is an

unconditional FDD, so is (Fj).

To see that (fi) is basic we need only note that (fi)i∈Jj is uniformly equivalent, over j, to

the unit vector basis of `
mj
p , as demonstrated in the proof of Proposition 5.4. �

6. Open problems

We end with a collection of remaining open problems. Wavelets and Gabor frames are

widely used coordinate systems formed by translating and applying a second operation (di-

lation or modulation) to a single function. We do not expect coordinate systems consisting

solely of translates of a single function to be useful in practice, but it is of interest to know

whether or not such coordinate systems are possible. There is still a large gap between the

examples of fundamental systems for Lp(R) consisting of translates of a single function and

the results of non existence of certain coordinate systems of Lp(R). We believe that the

following problems 6.1, 6.2 and 6.3 have negative answers. We exclude in our problems the

case p = 1, since for that case [OSSZ, Corollary 2.4] provides a negative answer to all three

questions.
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Problem 6.1. Let f ∈ Lp(R), 1 < p < ∞, and let (fi) be a sequence of translates of f .

Can (fi) ever be a basis of Lp(R)?

Asking whether or not there is a sequence (fi) of translates of some f ∈ Lp(R) which

forms a basis of f requires a specific order. This might not be natural since there is already

a natural order in R. Therefore one could ask for the existence of coordinate systems which

are weaker than Schauder bases and do not require an order. Recall that a sequence (xj) in

a Banach space is called Markushevich basis or M-basis of X, if (xj) is fundamental, which

means that the linear span of the xj is dense in X, minimal, which says that for each j ∈ N

xj is not in the closed linear span of the other xi, or equivalently that there is a unique

sequence (x∗j) ⊂ X∗, which is biorthogonal to (xj), and total, which means that for x ∈ X,

if x∗j(x) = 0 for all j∈N, then it follows that x = 0. We say that an M -basis (xj) is bounded

if supj ‖xj‖·‖x∗j‖ <∞. It is clear that every Schauder basis is a bounded M -basis. However,

note that for a sequence (xj) the property of being an M -basis does not depend on any order.

Problem 6.2. Let f ∈ Lp(R), 1 < p <∞, and let Λ ⊂ R be countable. Can (Tλf)λ∈Λ ever

be a bounded M - basis of Lp(R)?

We note that the examples of fundamental systems provided in [AO] consisting of trans-

lates of some f ∈ Lp(R), for 2 < p <∞, are not bounded M -bases of Lp(R), and, thus, are

not positive answers to Problem 6.2. In Theorem 4.1 we constructed an unconditional frame

for all of Lp(Rd), 2 < p < ∞, of the form (Tλnf, g
∗
n) ∈ Lp(Rd) × Lq(Rd), with f ∈ Lp(Rd),

where (λn) could be any unbounded sequence in (Rd). This was possible because we allowed

the (g∗n) to be arbitrarily small.

Problem 6.3. Let f ∈ Lp(R), 1 < p < ∞, and let (fi) be a sequence of translates of f . Is

there a semi normalized sequence (g∗n) ⊂ Lq(R) so that (fn, g
∗
n) is an unconditional frame for

Lp(R)?
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For 2 < p <∞, we obtained a function f ∈ Lp(R) and a subsequence (ni)
∞
i=1 of N so that

Xp(f, (−ni)∞i=1) is both isomorphic to Lp(R) and complemented in Lp(R), and (T−ni
f)∞i=1

can be blocked to form an unconditional FDD for Xp(f, (ni)
∞
i=1).

Problem 6.4. Let f ∈ Lp(R), 1 < p <∞ and let (fi) be a sequence of translates of f . Can

(fi) ever be blocked to be an (unconditional) FDD for Lp(R)?

In several of our examples we needed a restriction on p. We do not know whether or not

some of these restrictions are necessary.

Problems 6.5. Let f ∈ Lp(R), 1 < p < 2, and let (fi) be a sequence of translates of f .

i) Can (fi) ever be basic such that Lp(R) embeds into span(fi)?

ii) Can (fi) ever be blocked into an (unconditional) FDD such that Lp(R) embeds into

span(fi) ?
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