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Abstract. Parseval frames can be thought of as redundant or linearly de-

pendent coordinate systems for Hilbert spaces, and have important appli-

cations in such areas as signal processing, data compression, and sampling

theory. We extend the notion of a Parseval frame for a fixed Hilbert space

to that of a moving Parseval frame for a vector bundle over a manifold.

Many vector bundles do not have a moving basis, but in contrast to this

every vector bundle over a paracompact manifold has a moving Parseval

frame. We prove that a sequence of sections of a vector bundle is a moving

Parseval frame if and only if the sections are the orthogonal projection of a

moving orthonormal basis for a larger vector bundle. In the case that our

vector bundle is the tangent bundle of a Riemannian manifold, we prove

that a sequence of vector fields is a Parseval frame for the tangent bundle

of a Riemannian manifold if and only if the vector fields are the orthogonal

projection of a moving orthonormal basis for the tangent bundle of a larger

Riemannian manifold.

1. Introduction

Frames for Hilbert spaces are essentially redundant coordinate systems. That

is, every vector can be represented as a series of scaled frame vectors, but the series

is not unique. Though this redundancy is not necessary in a coordinate system,

it can actually be very useful. In particular, frames have played important roles

in modern signal processing after originally being applied in 1986 by Daubechies,
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Grossmann, and Meyer [8]. Besides being important for their real world applica-

tions, frames are also interesting for both their analytic and geometric properties

[1],[3][7],[12] as well as their connection to the famous Kadison-Singer problem

[4],[18].

A sequence of vectors (xi) in a Hilbert space H is called a frame for H if there

exists constants A,B > 0 such that

A‖x‖2 ≤
∑
|〈xi, x〉|2 ≤ B‖x‖2 for all x ∈ H.

The constants A,B are called the frame bounds. The frame is called tight if

A = B, and is called Parseval if A = B = 1. The name Parseval was chosen

because A = B = 1 if and only if the frame satisfies Parseval’s identity. That is,

a sequence of vectors (xi) in a Hilbert space H is a Parseval frame for H if and

only if ∑
〈xi, x〉xi = x for all x ∈ H.

This useful reconstruction formula follows from the dilation theorem of Han and

Larson [12], which can be considered as a special case of Naimark’s dilation the-

orem for positive operator valued measures [16][17]. They proved that if (xi) is a

Parseval frame for a Hilbert space H, then (xi) is the orthogonal projection of an

orthonormal basis for a larger Hilbert space which contains H as a subspace. It

is easy to see that the orthogonal projection of an orthonormal basis is a Parseval

frame, and thus the dilation theorem characterizes Parseval frames as orthogonal

projections of orthonormal bases.

In differential topology and differential geometry, the word frame has a dif-

ferent meaning. A moving frame for the tangent bundle of a smooth manifold

is essentially a basis for the tangent space at each point in the manifold which

varies smoothly over the manifold. In other words, a moving frame for the tangent

bundle of an n-dimensional smooth manifold is a set of n linearly independent

vector fields. These two different definitions for the word “frame”, naturally lead

one to question how they are related. We will combine the concepts by studying

Parseval frames which vary smoothly over a manifold, which we formally define

below.

Definition 1. Let π : E →M be a rank n-vector bundle over a smooth manifold

M with a given inner product 〈·, ·〉. Let k ≥ n, and fi : M → E be a smooth

section of π for all 1 ≤ i ≤ k. We say that (fi)
k
i=1 is a moving Parseval frame for

π if (fi(x))ki=1 is a Parseval frame for the fiber π−1(x) for all x ∈M . That is, for
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all x ∈M ,

y =

k∑
i=1

〈y, fi(x)〉fi(x) for all y ∈ π−1(x).

A Parseval frame for a fixed Hilbert space can be constructed by projecting an

orthonormal basis, and thus the natural way to construct moving Parseval frames

is to project moving orthonormal bases. For instance, the two-dimensional sphere

S2 does not have a nowhere-zero vector field, and hence cannot have a moving

orthonormal basis for its tangent space. However, if we consider S2 as the unit

sphere in R3 and (ei)
3
i=1 as the standard unit vector basis for R3, then at each

point p ∈ S2 we may project (ei)
3
i=1 onto the tangent space Tp(S

2), giving us a

moving Parseval frame of three vectors for TS2. As every vector bundle over a

para-compact manifold is a subbundle of a trivial bundle, we may project the basis

for the trivial bundle onto the sub-bundle and obtain that every vector bundle

over a para-compact manifold has a moving Parseval frame. Thus in contrast to

moving bases, we have that moving Parseval frames always exist. The natural

general questions to consider are then: When do moving Parseval frames with

particular structure exist? How do theorems about Parseval frames generalize

to the vector bundle setting?, and How can we construct nice moving Parseval

frames for vector bundles in the absence of moving bases? Our main results are

the following theorems which extend the dilation theorem of Han and Larson to

the context of vector bundles. The proofs will be given in Section 3.

Theorem 1.1. Let π1 : E1 → M be a rank n vector bundle over a paracompact

manifold M with a moving Parseval frame (fi)
k
i=1. There exists a rank k−n vector

bundle π2 : E2 →M with a moving Parseval frame (gi)
k
i=1 so that (fi ⊕ gi)ki=1 is

a moving orthonormal basis for the vector bundle π1 ⊕ π2 : E1 ⊕ E2 →M .

If M is a Riemannian manifold with a moving Parseval frame for TM , we

may apply Theorem 1.1 to obtain a vector bundle containing TM with a moving

orthonormal basis which projects to the moving Parseval frame. However, if we

start with a moving Parseval frame for a tangent bundle, we want to end up

with a moving orthonormal basis for a larger tangent bundle which projects to

the moving Parseval frame. This way we would remain in the class of tangent

bundles, instead of general vector bundles. The following theorem states that we

can do this.

Theorem 1.2. Let Mn be an n-dimensional Riemannian manifold and (fi)
k
i=1 be

a moving Parseval frame for TM for some k ≥ n. There exists a k-dimensional

Riemannian manifold Nk with a moving orthonormal basis (ei)
k
i=1 for TN such
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that Nk contains Mn as a submanifold and PTxMei(x) = fi(x) for all x ∈ Mn

and 1 ≤ i ≤ k, where PTxM is orthogonal projection from TxN onto TxM .

Though the concept of a moving Parseval frame seems natural to consider, we

are aware of only one paper on the subject. In 2009, P. Kuchment proved in his

Institute of Physics select paper that particular vector bundles over the torus,

which arise in mathematical physics, have natural moving Parseval frames but do

not have moving bases [14]. The relationship between frames for Hilbert spaces

and manifolds was also considered in a different context by Dykema and Strawn,

who studied the manifold structure of collections of Parseval frames under certain

equivalent classes [10].

We will use the term inner product on a vector bundle π : E → M to mean a

positive definite symmetric bilinear form. All of our theorems will concern vector

bundles with a given inner product. In the case that our vector bundle is the

tangent bundle of a Riemannian manifold, we will take the inner product to be

the Riemannian metric. For terminology and background on vector bundles and

smooth manifolds see [15], for terminology and background on frames for Hilbert

spaces see [6] and [11].

The majority of the research contained in this paper was conducted at the

2009 Research Experience for Undergraduates in Matrix Analysis and Wavelets

organized by Dr. David Larson. The first author was a research mentor for the

program, and the second, third, and fourth authors were participants. We sin-

cerely thank Dr. Larson for his advice and encouragement.

2. Preliminaries and Examples

Our goal is to study moving Parseval frames and extend theorems about fixed

Parseval frames for Hilbert spaces to moving Parseval frames for vector bundles.

To do this, we will first need to define some notation and recall some useful

characterizations of Parseval frames for Hilbert spaces in terms of matrices. For

F = (fi)
k
i=1 ∈ ⊕ki=1Rn and (ui)

n
i=1 a fixed orthonormal basis for Rn, we denote

[F ]n×k to be the matrix whose column vectors with respect to the basis (ui)
n
i=1 are

given by (fi)
k
i=1. For F = (fi)

k
i=1 ∈ ⊕ki=1Rn, G = (fi)

k
i=1 ∈ ⊕ki=1Rm, we define

F ⊕G = (fi ⊕ gi)ki=1 ∈ ⊕ki=1Rn+m. If k > n, (ui)
n
i=1 is a fixed orthonormal basis

for Rn and (ui)
k
i=n+1 is a fixed orthonormal basis for Rk−n, then the matrix [F ⊕

G](n+m)×k given with respect to (ui)
k
i=1 will be formed by appending the column

vectors (gi)
k
i=1 to the column vectors (fi)

k
i=1. In other words, [F ⊕G](n+m)×k =(

f1 · · · fk
g1 · · · gk

)
. This matrix framework allows us to provide a simple proof of
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the Han-Larson dilation theorem, often known as the Naimark dilation theorem,

for finite length Parseval frames for Rn. In a later section we will extend this

proof to vector bundles.

Theorem 2.1. [12] If k > n, and (fi)
k
i=1 is a Parseval frame for Rn, then there

exists a Parseval frame (gi)
k
i=1 for Rk−n such that (fi⊕ gi)ki=1 is an orthonormal

basis for Rn ⊕ Rk−n.

Proof. We denote the unit vector basis for Rn by (ui)
n
i=1. Let F = (fi)

k
i=1 and

let [F ]n×k be the matrix whose column vectors with respect to (ui)
n
i=1 are given

by (fi)
k
i=1. If 1 ≤ p, q ≤ n, then the inner product of the pth row of T with the

qth row of T is given by
∑k
i=1〈fi, up〉〈fi, uq〉. We now use the following equality.

2 =

k∑
i=1

〈fi, up + uq〉2 =

k∑
i=1

〈fi, up〉2 +

k∑
i=1

〈fi, uq〉2 + 2

k∑
i=1

〈fi, up〉〈fi, uq〉

=2 + 2

k∑
i=1

〈fi, up〉〈fi, uq〉

Thus we have that
∑k
i=1〈fi, up〉〈fi, uq〉 = 0, and hence the rows of [F ]n×k are

orthonormal. We can thus choose G = (gi)
k
i=1 ⊂ Rk−n such that the rows of

[F ⊕G]k×k are orthonormal. Thus the column vectors (fi ⊕ gi)ki=1 of [F ⊕G]k×k
form an orthonormal basis for Rn ⊕ Rk−n. We have that (gi)

k
i=1 must be a

Parseval frame for Rk−n as it is the orthogonal projection of the orthonormal

basis (fi ⊕ gi)ki=1. �

As shown in the proof of Theorem 2.1, a sequence of vectors F = (fi)
k
i=1 ⊂ Rn

is a Parseval frame for Rn if and only if the matrix [F ]n×k has orthonormal rows.

The dilation theorem gives that Parseval frames are exactly orthogonal projections

of orthonormal bases. It is then immediate that the orthogonal projection of a

moving orthonormal basis is a moving Parseval frame.

Theorem 2.2. Let k ≥ n and let π : E → M be a rank k vector bundle with an

inner product 〈·, ·〉 and moving orthonormal basis (ei)
k
i=1. If π|E0

: E0 →M is a

rank n sub-bundle, then (PE0ei)
k
i=1 is a moving Parseval frame for π|E0 : E0 →

M , where PE0
(ei(x)) is the orthogonal projection of ei(x) onto the fiber π|−1

E0
(x)

for all x ∈M .

Proof. As π|E0 : E0 →M is a subbundle of π : E →M , we have that PE0 : E →
E0 is continuous. Furthermore, for all 1 ≤ i ≤ k, we have that π|E0

(PE0
(ei(x))) =

x for all x ∈ M . Thus PE0ei is a section of π|E0 : E0 → M for all 1 ≤ i ≤ k.
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(PE0
ei(x))ki=1 is a Parseval frame for π|−1

E0
(x) for all x ∈M , as it is the orthogonal

projection of an orthonormal basis. Thus (PE0
ei(x))ki=1 is a moving Parseval

frame for π|E0
: E0 →M . �

By applying Theorem 2.2 to the tangent bundle of a smooth manifold, we

obtain the following corollary for Riemannian manifolds.

Corollary 2.3. Let k ≥ n and let N be a k-dimensional Riemannian manifold

with a moving orthonormal basis (ei)
k
i=1 for its tangent bundle TN . If M ⊂ N

is a smooth sub-manifold, then (PTMei)
k
i=1 is a moving Parseval frame for TM ,

where PTM (ei(x)) is the orthogonal projection of ei(x) ∈ TxN onto TxM for all

x ∈M and 1 ≤ i ≤ k.

Proof. Let π : TN → N be the tangent bundle for N . Then (ei|M )ki=1 is a

moving orthonormal basis for the vector bundle π|π−1(M) : π−1(M)→M , which

contains TM as a sub-bundle. We may thus apply Theorem 2.2. �

For example, the two dimensional sphere S2 does not have a moving basis

for its tangent space, as it does not have a nowhere zero vector field. However,

if we consider R3 to be a Riemannian manifold with the Riemannian metric

given by the dot product, then (ei)
3
i=1 is a moving orthonormal basis for TR3,

where e1(x, y, z) = (1, 0, 0), e2(x, y, z) = (0, 1, 0), and e3(x, y, z) = (0, 0, 1) for all

(x, y, z) ∈ R3. We can then project (ei)
3
i=1 onto the tangent bundle of the unit

sphere to obtain a moving Parseval frame (fi)
3
i=1 for TS2. In this case, (fi)

3
i=1

will be defined by f1(x, y, z) = (1−x2,−xy,−xz), f2(x, y, z) = (−xy, 1−y2,−yz),
and f3(x, y, z) = (−xz,−yz, 1− z2) for all (x, y, z) ∈ S2.

If M is an n dimensional smooth manifold, and φ : M → N is an embedding

into a k dimensional Riemannian manifold N with a moving orthonormal basis for

TN , then we can project the moving orthonormal basis onto Tφ(M) and then pull

it back to obtain a moving Parseval frame for TM of k vectors. Furthermore, this

may be done if φ is only an immersion instead of an embedding. The Whitney

immersion theorem gives that for all n ≥ 2, every n dimensional paracompact

smooth manifold immerses in R2n−1. Thus every n dimensional paracompact

smooth manifold has a moving Parseval frame for its tangent bundle of 2n − 1

vectors. When considering n = 2, we have that R2, the cylinder and the torus are

the only two dimensional manifolds with continuous moving basis for its tangent

bundle. However, every two dimensional paracompact smooth manifold has a

moving Parseval frame of three vectors obtained by immersing the manifold in

R3. Unfortunately, obtaining a moving Parseval frame in this way often does not

lend us much intuition about the space in question. We present here an intuitive
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moving Parseval frame for the tangent bundles of the Möbius strip and Klein

bottle which cannot be obtained by immersing in R3 with the usual orthonormal

basis, but which reflects the topology of the surface.

Example 2.4. We represent the Möbius strip and Klein bottle in the standard

way with the square [0, 1]× [0, 1], where we identify the top and bottom according

to (x, 1) ≡ (1 − x, 0) for all 0 ≤ x ≤ 1, and for the Klein bottle we identify the

sides according to (1, y) ≡ (0, y) for all 0 ≤ y ≤ 1, as seen in Figure 1.

-

�

-

�

66 66

- î6

ĵ

Figure 1. Aligned Möbius Strip (left) and Klein bottle (right)

For all (x, y) ∈ [0, 1]× [0, 1], let

f1(x, y) = (cos(πy), 0) f2(x, y) = (sin(πy), 0) f3(x, y) = (0, 1).

It is easy to see that (fi)
3
i=1 is a moving Parseval frame for both the Möbius strip

and the Klein bottle, which naturally shows the twist in their topology.

Given a vector bundle π1 : E1 → M , it is a classic problem in differential

topology to find a vector bundle π2 : E2 → M so that π1 ⊕ π2 : E1 ⊕ E2 → M

has a moving basis. This is of course closely related to our work. Before proving

Theorem 1.1, we need to show that our condition that π1⊕π2 : E1⊕E2 →M has

an orthonormal basis which projects to a given Parseval frame for π1 : E1 →M is

in fact stronger in general than the condition that π1⊕π2 : E1⊕E2 →M simply

has a basis. Thus the dilation theorems for moving Parseval frames do not follow

as corollaries from known results in differential topology. This will be illustrated

by the following simple example.

Example 2.5. We define a moving Parseval frame (fi)
3
i=1 for the vector bundle

S2 × R by f1 ≡ 1 and f2 ≡ f3 ≡ 0. The normal bundle to TS2 ⊂ TR3 is simply

S2 × R, and thus (S2 × R) ⊕ TS2 ∼= S2 × R3 has a moving basis. However, we

claim that there does not exist a moving basis (ei)
3
i=1 for (S2 × R) ⊕ TS2 such

that PS2×Rei = fi for all i = 1, 2, 3. Indeed, if PS2×Re2 = f2 = 0 then PTS2e2 is

nowhere zero. However, S2 does not have a nowhere zero vector field, and thus

we have a contradiction.
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We have a case of two vector bundles π1 : E1 → M and π2 : E2 → M and a

moving Parseval frame (fi)
k
i=1 for π1 which does not dilate to a moving basis for

π1 ⊕ π2 : E1 ⊕E2 →M , even though π1 ⊕ π2 : E1 ⊕E2 →M has a moving basis

of k vectors. This motivates the following question. What properties of a moving

Parseval frame (fi)
k
i=1 for a vector bundle π1 : E1 → M would guarantee that if

π1⊕π2 : E1⊕E2 →M has a moving basis of k vectors, then π1⊕π2 : E1⊕E2 →M

has a moving orthonormal basis which projects to (fi)
k
i=1? The following theorem

answers this question when k = n + 1, where n is the rank of the vector bundle

π1.

Theorem 2.6. Let (fi)
n+1
i=1 be a moving Parseval frame for a rank n vector bundle

π1 : E1 → M . If π2 : E2 → M is a rank 1 vector bundle such that π1 ⊕ π2 :

E1 ⊕ E2 → M has a moving basis, then π2 : E2 → M has a moving Parseval

frame (gi)
n+1
i=1 such that (fi ⊕ gi)n+1

i=1 is a moving orthonormal basis for π1 ⊕ π2 :

E1 ⊕ E2 →M .

Proof. If π1⊕ π2 : E1⊕E2 →M has a moving orthonormal basis (ei)
n+1
i=1 , then

the determinant of an operator or matrix with respect to (ei)
n+1
i=1 varies smoothly

over π1⊕π2 : E1⊕E2 →M . If T is an operator or matrix, we will denote dete(T )

to be the determinant of T with respect to (ei)
n+1
i=1 .

We will first prove the result locally, and then we will show that our local

choice can actually be made globally. By Lemma 3.2, for each x ∈ M there

exists εx > 0 and a smoothly varying frame (gx,i)
n+1
i=1 for π2|π−1

2 (Bεx (x)) such that

(fi⊕gx,i)n+1
i=1 is a moving orthonormal basis for π1|π−1

1 (Bεx (x))⊕π2|π−1
2 (Bεx (x)). For

each x, y ∈M , we denote [fi(y)⊕gx,i(y)]k×k to be the matrix with respect to the

basis (ei(x))n+1
i=1 whose column vectors are (fi(y) ⊕ gx,i(y))n+1

i=1 . It is easy to see

that (fi(y)⊕gx,i(y))n+1
i=1 is an orthonormal basis if and only if (fi(y)⊕−gx,i(y))n+1

i=1

is an orthonormal basis. Thus without loss of generality, we may assume that

(gx,i)
n+1
i=1 has been chosen such that dete[fi(x) ⊕ gx,i(x)]k×k = 1 for all x ∈

X, and hence dete[fi(y) ⊕ gx,i(y)]k×k = 1 for all x ∈ X and y ∈ Bεx(x) as

dete is continuous. As the span of (fi(y) ⊕ 0)n+1
i=1 has co-dimension 1, there is

exactly one choice for (gx,i(y))n+1
i=1 such that (fi(y) ⊕ gx,i(y))n+1

i=1 is orthonormal

and dete[fi(y)⊕ gx,i(y)]k×k = 1. Thus our locally smooth choice was unique, and

hence is smooth globally. �

3. Proofs of Dilation Theorems

We denote the set of all Parseval frames of k vectors for Rn by Pk,n. Specifically,

Pk,n = {(fi)ki=1 ∈ ⊕ki=1Rn : (fi)
k
i=1 is a Parseval frame for Rn}. In order to study
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moving Parseval frames over smooth manifolds, we need to first establish that Pk,n
itself is a smooth manifold.

Theorem 3.1. For every k ≥ n, the set Pk,n is a smooth submanifold of ⊕ki=1Rn
of dimension kn− n(n+ 1)/2.

Proof. If F = (fi)
k
i=1 ∈ ⊕ki=1Rn then the positive self-adjoint operator defined

by SF(x) =
∑k
i=1〈x, fi〉fi for all x ∈ Rn is called the frame operator for (fi)

k
i=1.

It is clear that the map φ : ⊕ki=1Rn → B(Rn) given by φ(F) = SF is smooth and

Pk,n = φ−1(Id). The set of self-adjoint operators on Rn is naturally diffeomorphic

to Rn(n+1)/2 as seen by fixing a basis and representing the self-adjoint operators

by symmetric matrices. The positive definite self-adjoint operators are an open

subset of the self-adjoint operators and thus form a smooth manifold. By Sard’s

theorem there exists a positive definite self-adjoint operator A which is a regular

value of φ, and thus φ−1(A) is a smooth submanifold of ⊕ki=1Rn. We have that

φ−1(A) has dimension kn − n(n + 1)/2 as the manifold of positive definite self

adjoint operators has dimension n(n+1)/2 and Rkn has dimension kn. We define

a diffeomorphism ψA : ⊕ki=1Rn → ⊕ki=1Rn by ψA((fi)
k
i=1) = (A−1/2fi)

k
i=1. As A

is self adjoint we have that

φ ◦ ψA(F)(x) =
k∑
i=1

〈x,A− 1
2 fi〉A−

1
2 fi = A−

1
2

k∑
i=1

〈A− 1
2x, fi〉fi = A−

1
2φ(F)A−

1
2x.

Thus φ ◦ ψA(F) = A−
1
2φ(F)A−

1
2 , and hence ψA(φ−1A) = φ−1(Id). We con-

clude that Pk,n = φ−1(Id) is diffeomorphic to φ−1(A) and is hence a smooth

submanifold of ⊕ki=1Rn of dimension kn− n(n+ 1)/2. �

We note that the same proof gives that the set of frames of k-vectors in Rn with

a given invertible frame operator is a smooth sub-manifold of ⊕ki=1Rn. We now

prove that locally, we can smoothly choose complementary frames for Parseval

frames. Note that for k ≥ 1, Pk,k is the collection of all orthonormal bases for

Rk.

Lemma 3.2. For every k ≥ n and F ∈ Pk,n there exists some ε > 0 and a

smooth map φ : Bε(F ) ∩ Pk,n → Pk,k−n such that G ⊕ φ(G) ∈ Pk,k for all

G ∈ Bε(F ) ∩ Pk,n.

Proof. We choose H ∈ Pk,k−n such that F ⊕H ∈ Pk,k and fix an orthonormal

basis for Rn. As mentioned earlier, this is equivalent to the matrix [F ⊕ H]k×k
being unitary. The set of invertible matrices is open, and thus there exists ε > 0

such that [G⊕H]k×k is invertible for all G ∈ Bε(F )∩Pk,n. For each G ∈ Bε(F ),
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we apply the Gram-Schmidt procedure to the rows of [G ⊕ H]k×k, where the

procedure is applied to the rows of [G]n×k before the rows of [H](k−n)×k. As

G ∈ Pk,n, the rows of [G]n×k are orthonormal. Thus the Gram-Schmidt procedure

when applied to [G ⊕ H]k×k will leave the rows contained in [G]n×k fixed, and

hence the matrix resulting from applying the Gram-Schmidt procedure will be

of the form [G ⊕ φ(G)]k×k for some φ(G) ∈ Pk,k−n. Furthermore, the map

φ : Pk,n → Pk,k−n is smooth as the Gram-Schmidt procedure is smooth when

applied to the rows of any set of invertible matrices. �

We are now ready to prove the first of our two main theorems, which were

stated in the introduction.

Proof of Theorem 1.1. Let π1 : E1 → M be a rank n vector bundle over a

paracompact manifold M with a moving Parseval frame (fi)
k
i=1. By Lemma 3.2,

we can locally choose a complementary moving Parseval frame. That is, for each

x ∈ M , there exists εx > 0 and a moving Parseval frame (gx,i)
k
i=1 for the trivial

vector bundle πx : Bεx(x) × Rk−n → Bεx(x) such that (fi ⊕ gi)ki=1 is a moving

orthonormal basis for the vector bundle π1|π−1
1 (Bεx (x)) ⊕ πx. The collection of

sets {Bεx(x)}x∈M is an open cover of M , and thus there is a partition of unity

{ψa}a∈A subordinate to a locally finite open refinement {Ua}a∈A. We thus have

for each a ∈ A a moving Parseval frame (ga,i)
k
i=1 for the trivial vector bundle

πa : Ua × Rk−n → Ua such that (fi ⊕ ga,i)ki=1 is a moving orthonormal basis for

π1|π−1
1 (Ua) ⊕ πa. We use the partition of unity to extend (ga,i)

k
i=1 to all of M by

defining gi =
⊕

a∈A ψ
1/2
a ga,i for all 1 ≤ i ≤ n, where we set ga,i(x) = 0 if x 6∈ Ua.

Thus gi is a smooth section of the trivial vector bundle πt : M ×⊕a∈ARk−n →M

for all 1 ≤ i ≤ k. The following simple calculations show that (fi(x) ⊕ gi(x))ki=1

is an orthonormal set of vectors in π−1
1 (x) ⊕

⊕
a∈A Rk−n for all x ∈ M . For all

1 ≤ i, j ≤ k, we have the following calculation.

〈fi(x)⊕ gi(x), fj(x)⊕ gj(x)〉 = 〈fi(x), fj(x)〉+
∑
a∈A

ψa〈ga,i(x), ga,j(x)〉

=
∑
a∈A

ψa
(
〈fi(x), fj(x)〉+ 〈ga,i(x), ga,j(x)〉

)
=
∑
a∈A

ψa〈fi(x)⊕ ga,i(x), fj(x)⊕ ga,j(x)〉

=
∑
a∈A

ψaδi,j = δi,j
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Thus, (fi ⊕ gi)ki=1 is a sequence of smooth orthonormal sections of π1 ⊕ πt, and

hence E := span1≤i≤k,x∈Mfi(x) ⊕ gi(x) is a smooth manifold and we have an

induced vector bundle πE : E → M . We now show that (fj)1≤j≤k being a

moving Parseval frame implies that span1≤j≤kfj(x)⊕0 ⊂ span1≤j≤kfj(x)⊕gj(x)

for all x ∈M . Indeed, if x ∈M and y ∈ π−1
1 (x) then we calculate the following.

‖Pπ−1
E (x)y ⊕ 0‖2 =

k∑
i=1

〈y ⊕ 0, fi ⊕ gi〉2 =

k∑
i=1

〈y, fi〉2 = ‖y‖2

Which implies that y⊕0 = Pπ−1
E (x)y⊕0. Thus we conclude that span1≤j≤kfj(x)⊕

0 ⊂ span1≤j≤kfj(x) ⊕ gj(x), and hence p1 : E1 → M is a sub-bundle of πE :

E → M . It is then possible to define π2 : E2 → M as the orthogonal bundle of

π1 : E1 →M in πE : E →M . We have that fi = PE1
fi⊕gi and thus by definition

gi = PE2fi⊕gi. As the orthogonal projection of a moving orthonormal basis onto

a sub-bundle, (gi)
∞
i=1 is a moving Parseval frame for E2 and is a complementary

frame for (fi)
∞
i=1. �

The above proof takes an approach using local coordinates, and then combines

the pieces using a partition of unity. As this is a common technique in differen-

tial topology, the above construction is valuable in that it could potentially be

combined with other proofs and constructions. We present as well a second proof

which avoids local coordinates and is based on the original proof of the dilation

theorem of Han and Larson.

Second proof of Theorem 1.1. Let π1 : E1 →M be a rank n vector bundle

over a paracompact manifold M with a moving Parseval frame (fi)
k
i=1. Let π :

M × Rk → M denote the trivial rank k vector bundle over M , and let (ei)
k
i=1

be the moving unit vector basis for π : M × Rk → M . We define a bundle

map θ : E1 → M × Rk over M by θ(y) =
∑k
i=1〈y, fi(π1(y))〉ei(π1(y)). As

(fi(π1(y))ki=1 is a Parseval frame for the fiber containing y, we have that ‖y‖2 =∑k
i=1〈y, fi(π1(y))〉2 = ‖θ(y)‖2. Hence, θ|π−1

1 (x) is a linear isometric embedding of

the fiber for π−1
1 (x) into the fiber π−1(x) all x ∈ M . Thus, for convenience, we

may identify the bundle π1 : E1 → M with π|θ(E1) : θ(E1) → M . In particular,

we have that

〈y, ei(π(y))〉 = 〈y, fi(π(y))〉 for all y ∈ E1.

Let P1 : M × Rk → E1 be orthogonal projection, that is, P1 is the bundle map

such that P1(y) is the orthogonal projection of y onto the fiber π−1
1 (π(y)). We

now show that P1 ◦ ei = fi for all 1 ≤ i ≤ k. We let x ∈ M , y ∈ π−1
1 (x) and
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1 ≤ i ≤ k, and obtain

〈y, P1(ei(x))〉 = 〈y, ei(x)〉 as y ∈ E1

= 〈y, fi(x)〉 by the definition of θ as x = π1(y)

Thus 〈y, P1(ei(x))〉 = 〈y, fi(x)〉 for all y ∈ π−1
1 (x), and hence P1(ei(x)) = fi(x)

for all x ∈M . �

We now consider the case where M is a smooth paracompact manifold with

a moving Parseval frame for its tangent bundle TM . We may apply Theorem

1.1 to obtain a vector bundle containing TM with a moving orthonormal basis

which projects to the moving Parseval frame. However, we want the moving

orthonormal basis to be for a larger tangent bundle and not just a general vector

bundle. To do this, we will show that actually the total space of the vector bundle

given by Theorem 1.1 will be a Riemannian manifold with an orthonormal basis

which projects to the given Parseval frame for TM .

Proof of Theorem 1.2. We denote π1 : TM → M to be the tangent bundle.

By Theorem 1.1 there exists a rank (k − n) vector bundle π2 : N → M with

a moving Parseval frame (gi)
k
i=1 so that (fi ⊕ gi)

k
i=1 is a moving orthonormal

basis for the vector bundle π1 ⊕ π2. The manifold N has dimension k, as M has

dimension n and the vector bundle π2 : N → M has rank k − n. For p ∈ N and

γ : R→ N such that γ(0) = p, we have the differential Dγ ∈ TN defined by

Dγ(f) =
d

dt
f(γ(t))|t=0,

for each smooth real valued f defined on an open neighborhood of p. We define

a smooth map Θ : N ×N → N by

Θ(p, q) =

k∑
i=1

〈gi(π2(p)), p〉gi(π2(q)) for all p, q ∈ N.

The map Θ has been constructed so that if p and q are contained in the same

fiber of π2 : N →M , i.e. π2(q) = π2(p), then Θ(p, q) = p. Note that if q0, q1 ∈ N
such that π2(q0) = π2(q1), then Θ(p, q0) = Θ(p, q1). As π2(Θ(p, q)) = π2(q), we

thus have that Θ(p, q) = Θ(p,Θ(p, q)) for all p, q ∈ N . We use Θ to define a

smooth map ψ : TN → TN by setting for each smooth γ : R → N , ψ(Dγ) =

Dγ −DΘ(γ(0),γ). In other words, if γ : R → N is smooth and f is a smooth real
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valued function defined on an open neighborhood of γ(0), then

ψ(Dγ)(f) =
d

dt
f(γ(t))|t=0 −

d

dt
f

(
k∑
i=1

〈gi(π2(γ(0))), γ(0)〉 gi(π2(γ(t)))

)
|t=0.

Note that if Dγ0 = Dγ1 then ψ(Dγ0) = ψ(Dγ1), and that ψ(aDγ0 + Dγ1) =

aψ(Dγ0) + ψ(Dγ1) for all a ∈ R and smooth γ0, γ1 : R → N . Furthermore, if

π2(γ) is constant, then ψ(Dγ) = Dγ .

For each p ∈ N , we define a linear operator Φ : TpN → Tπ2(p)M by Φ(Dγ) =

Dπ2◦γ . Then Φ(ψ(γ)) = 0 for all smooth γ : R→ N , as

Φ(ψ(γ)) = Dπ2◦γ −Dπ2(Θ(γ(0),γ)) = Dπ2◦γ −Dπ2◦γ = 0.

For each q ∈ π−1
2 (π2(p)) we define Dq as the derivative at p in the direction of

q. That is, Dq(f) = d
dtf(p + tq)|t=0, for each smooth real valued f defined on

an open neighborhood of p. We have that ψ(Dq) = Dq for all q ∈ π−1
2 (π2(p)) as

π2(p+tq) is constant with respect to t. Thus {Dq}π2(q)=π2(p) = ψ(TpN) = Φ−1(0)

as {Dq}π2(q)=π2(p) ⊆ ψ(TpN) ⊆ Φ−1(0) and both spaces {Dq}π2(q)=π2(p) and

Φ−1(0) are (k − n)-dimensional. For each smooth real valued f defined on an

open neighborhood of p, we denote qγ to be the unique vector in π−1
2 (π2(p)) such

that Dqγ = ψ(Dγ).

We define a smooth bundle map φ : TN → E(π1 ⊕ π2) by for γ : R → N , we

set φ(Dγ) = Dπ2◦γ ⊕ qγ . Note that for each p ∈ N , φ|TpN : TpN → Tπ2(p)M is an

isomorphism as Dπ2◦γ = 0 if and only if Dγ = Dqγ . Thus φ induces a Riemannian

metric 〈·, ·〉N on TN by 〈f, g〉N = 〈φ(f), φ(g)〉. We have that (fi ⊕ gi)ki=1 is a

moving orthonormal basis for π1 ⊕ π2, and hence (φ−1(fi ⊕ gi))ki=1 is a moving

orthonormal basis for TN . If p ∈ M and γ : R → M ⊂ N such that γ(0) = p

then φ(Dγ) = Dγ ⊕ 0. Thus φ−1(fi(p)⊕ 0) = fi(p) for all 1 ≤ i ≤ k and p ∈M ,

and hence fi = PTpMφ
−1(fi ⊕ gi) for all 1 ≤ i ≤ k. �

We may apply Theorem 1.2 to obtain the following corollary, where we call a

smooth manifold parallelizable if it has a moving basis for its tangent bundle.

Corollary 3.3. Let M be a paracompact smooth manifold. If M immerses in a

k dimensional parallelizable paracompact smooth manifold, then M embeds in a k

dimensional parallelizable paracompact smooth manifold.

Proof. Assume that M immerses in a parallelizable smooth manifold N . We

may assign a Riemannian metric to N such that the moving basis for TN is an

orthonormal basis. Projecting this orthonormal basis then pulling back to TM

gives a moving Parseval frame for TM of k vectors. Thus M embeds in a k

dimensional parallelizable smooth manifold by Theorem 1.2. �
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4. Open problems

The manifold N constructed in Theorem 1.2 is the total space of a vector

bundle, and is hence not compact. We thus have the following question:

Question 1. Let Mn be a smooth n-dimensional compact Riemannian manifold

and (fi)
k
i=1 be a moving Parseval frame for TM for some k ≥ n. Does there

exists a smooth k-dimensional compact Riemannian manifold Nk which has a

moving orthonormal basis (ei)
k
i=1 such that Nk contains Mn as a submanifold

and PTxMei(x) = fi(x) for all x ∈Mn and 1 ≤ i ≤ k?

If, (fi)
k
i=1 is a Parseval frame for Rn and k > m > n, then there exists a

Parseval frame (hi)
k
i=1 for Rn ⊕ Rm−n such that PRn(hi) = fi for all 1 ≤ i ≤ m.

Thus instead of dilating all the way to an orthonormal basis for a k-dimensional

Hilbert space, it is possible to dilate to a Parseval frame for a m-dimensional

Hilbert space. This motivates the following question in the vector bundle setting.

Question 2. Let k > m > n be integers, and let π1 : E1 →M be a rank n vector

bundle over a paracompact manifold M with a moving Parseval frame (fi)
k
i=1.

Does there exists a rank m−n vector bundle π2 : E2 →M with a moving Parseval

frame (gi)
k
i=1 so that (fi⊕gi)ki=1 is a moving Parseval frame for the vector bundle

π1 ⊕ π2 : E1 ⊕ E2 →M?

In [1], it is proven that for every natural numbers k ≥ n, there exists a tight

frame (fi)
k
i=1 of Rn such that ‖fi‖ = 1 for all 1 ≤ i ≤ k, which they call a

finite unit tight frame or FUNTF. An explicit construction for FUNTFs is given

in [7], and they are further studied in [2],[5]. FUNTFs are also of interest for

applications in signal processing, as they minimize mean squared error under an

additive noise model for quantization [13]. For a vector bundle to have a moving

FUNTF, it is necessary that it have a nowhere zero section. Thus we have the

following question concerning moving FUNTFs.

Question 3. Let π : E → N be a rank n vector bundle over a paracompact

manifold N such that π has a nowhere zero section. For what k ≥ n does π have

a moving tight frame (fi)
k
i=1 such that ‖fi(x)‖ = 1 for all x ∈ N and 1 ≤ i ≤ k?

These questions are general and potentially difficult, and so solutions for certain

cases would still be valuable. For instance, for general values of k and n, it is

unknown if the collection of FUNTFs are connected [10]. A moving FUNTF of k

sections for a rank n vector bundle over the circle can be thought of as a path in

the collection of FUNTFs of k vectors for Rn. Thus, knowing whether or not a

rank n vector bundle over the circle has a FUNTF of k vectors will give insight
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into the problem of determining the connected components of the collection of

FUNTFs of k vectors for Rn.
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