
THE DISCRETIZATION PROBLEM FOR CONTINUOUS FRAMES

DANIEL FREEMAN AND DARRIN SPEEGLE

Abstract. We characterize when a coherent state or continuous frame for a Hilbert space
may be sampled to obtain a frame, which solves the discretization problem for continuous
frames. In particular, we prove that every bounded continuous frame for a Hilbert space
may be sampled to obtain a frame. We give multiple applications to different classes of
frames such as scalable frames and Gabor frames.

1. Introduction

Definition 1.1. A collection of vectors (xj)j∈J in a Hilbert space H is called a frame or a
discrete frame for H if there exist positive constants A and B (called lower and upper frame
bounds respectively) such that

(1.1) A‖x‖2 ≤
∑
j∈J

|〈x, xi〉|2 ≤ B‖x‖2 for all x ∈ H.

The frame is called tight if A = B and the frame is called Parseval if A = B = 1.

A frame can be thought of as a (possibly) redundant coordinate system in the sense that
a frame can contain more vectors than are necessary to represent each vector in the Hilbert
space. One way of interpreting the frame inequality (1.1) is that a frame for a Hilbert space
H is a collection of vectors in H indexed by a countable set J so that the norm in `2(J) of
the frame coefficients is equivalent to the norm on H. This notion can be nicely generalized
from the discrete to the continuous setting by instead of summing over a countable set J ,
we integrate over a measure space X. That is, a continuous frame for a Hilbert space H
is a collection of vectors indexed by a measure space X so that the norm of the frame
coefficients in L2(X) is equivalent to the norm on H. The following definition, with which
we are following [C], formalizes this notion.

Definition 1.2. Let (X,Σ, µ) be a positive, σ-finite measure space and let H be a separable
Hilbert space. A measurable function Ψ : X → H is a continuous frame of H with respect
to µ if there exist constants A,B > 0 such that

(1.2) A‖x‖2 ≤
∫
|〈x,Ψ(t)〉|2dµ(t) ≤ B‖x‖2 ∀x ∈ H.

The constant A is called a lower frame bound and the constant B is called an upper frame
bound. If A = B then the continuous frame is called tight and if A = B = 1 then the
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continuous frame is called Parseval or a coherent state. We say that Ψ : X → H is Bessel
if it has a finite upper frame bound B, but does not necessarily have a positive lower frame
bound A.

Note that if X is a countable set with counting measure, then Ψ : X → H is a continuous
frame of H is equivalent to (Ψ(t))t∈X being a frame of H. Thus, frames are a special case
of continuous frames. Often the definition of continuous frames in the literature includes
some additional topological structure of the measure space X and continuity of the map
Ψ : X → H, but we do not require this.

Continuous frames and coherent states are widely used in mathematical physics and har-
monic analysis and they appear prominently in quantum mechanics and quantum optics.
The theory of coherent states was initiated by Schrödinger in 1926 [S] and was generalized
to continuous frames by Ali, Antoine, and Gazeau [AAG1]. Though coherent states naturally
characterize many different physical properties, discrete frames are much better suited for
computations. Because of this, when working with coherent states and continuous frames,
researchers often create a discrete frame by sampling the continuous frame and then use
the discrete frame for computations instead of the entire continuous frame. Specifically, if
Ψ : X → H is a continuous frame and (tj)j∈J ⊆ X then (Ψ(tj))j∈J ⊆ H is called a sampling
of Ψ. The notion of creating a frame by sampling a coherent state has its origins in the very
start of modern frame theory. Indeed, Daubechies, Grossmann, and Meyer [DGM] popular-
ized modern frame theory in their seminal paper “Painless nonorthogonal expansions”, and
their constructions of frames for Hilbert spaces were all done by sampling different coherent
states. Another example which is of particular interest for frame theorists is that of Gabor
frames, which are samplings of the short time Fourier transform at a lattice, and we explore
this further in Section 2.

The discretization problem, posed by Ali, Antoine, and Gazeau in their physics textbook
Coherent States, Wavelets, and Their Generalizations [AAG2], asks when a continuous frame
of a Hilbert space can be sampled to obtain a frame. They state that a positive answer to the
question is crucial for practical applications of coherent states, and chapter 16 of the book is
devoted to the discretization problem. A solution for certain types of continuous frames was
obtained by Fornasier and Rauhut using the theory of co-orbit spaces [FR]. We solve the
discretization problem in its full generality with the following theorem which characterizes
exactly when a continuous frame may be sampled to obtain a frame.

Theorem 1.3. Let (X,Σ) be a measurable space such that every singleton is measurable and
let Ψ : X → H be measurable. There exists (tj)j∈J ∈ XJ such that (Ψ(tj))j∈J is a frame of H
if and only if there exists a positive, σ-finite measure ν on (X,Σ) so that Ψ is a continuous
frame of H with respect to ν which is bounded ν-almost everywhere. In particular, every
bounded continuous frame may be sampled to obtain a frame.

Here we mean that a continuous frame Ψ : X → H is bounded ν-almost everywhere if there
exists a constant C > 0 and measurable subset E ⊆ X with ν(E) = 0 such that ‖Ψ(t)‖ ≤ C
for all t ∈ X \ E.

Continuous frames used in applications are typically bounded. However, there do exist
examples of unbounded continuous frames which cannot be sampled to obtain a frame. For
example, consider the measure µ on N given by µ({n}) = 1/n. Then Ψ : N → `2 with
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Ψ(n) =
√
nen is an unbounded continuous frame, and any sampling of Ψ with dense span

is unbounded and hence not a frame. We note as well that our sampling (Ψ(tj))j∈J in the
statement of Theorem 1.3 allows for some points to be sampled multiple times, and indeed
there exist bounded continuous frames such that the only way for a sampling to be a frame
is for some points to be sampled multiple times.

Theorem 1.3 characterizes when a continuous frame may be sampled to obtain a frame.
The following theorem gives uniform frame bounds for the sampled frame in the case that
the continuous frame is Parseval and in the unit ball of the Hilbert space. We first prove
this uniform theorem in Section 5 and then use this to prove Theorem 1.3.

Theorem 1.4. There exist C,D > 0 such that if Ψ : X → H is a continuous Parseval frame
with ‖Ψ(t)‖ ≤ 1 for all t ∈ X then there exists (tj)j∈J ∈ XJ such that (Ψ(tj))j∈J is a frame
of H with lower frame bound C and upper frame bound D.

So far we have stated results solely in terms of sampling continuous frames. However,
as every frame can be realized as a continuous frame on N, we may consider what the
discretization problem implies in this case. Suppose that (xn)n∈N is a tight frame of a
Hilbert space H with frame bound K > 1 satisfying ‖xn‖ ≤ 1 for all n ∈ N. If we define
a measure µ on N with µ(n) = 1/K for all n ∈ N, then Ψ : N → H with Ψ(n) = xn is a
continuous Parseval frame. Now, sampling Ψ corresponds with taking a subset of (xn)n∈N.
This gives the following corollary, which was proven for finite frames by Nitzan, Olevskii,
and Ulanovskii [NOU].

Corollary 1.5. There exist uniform constants E,F > 0 such that if (xi)i∈I is a tight frame
of vectors in the unit ball of a Hilbert space H with frame bound greater than 1 then there
exists a subset J ⊆ I such that (xi)i∈J is a frame with lower frame bound E and upper frame
bound F .

For applications, this means that if you are working with a frame which is more redundant
than necessary then it is possible to a take a subset which is less redundant and is still a
good frame. In Section 3 we will give a direct proof of a generalization of Corollary 1.5 which
we state as Corollary 1.8 later in the introduction. To realize a more general application of
this idea, we call a collection of vectors (xi)i∈I in a Hilbert space H a scalable frame if there
exists scalars (ci)i∈I such that (cixi)i∈I is a Parseval frame for H [KOPT]. We can use this
to define a measure µ on I by µ(i) = |ci|2 for all i ∈ I. Then, Ψ : I → H with Ψ(i) = xi is
a continuous Parseval frame and applying Theorem 1.4 gives the following corollary.

Corollary 1.6. There exist uniform constants E,F > 0 such that if (xi)i∈I is a scalable
frame of unit vectors then there exists a subset J ⊆ I such that (xi)i∈J is a frame with lower
frame bound E and upper frame bound F .

We give further discussion of scalable frames in Section 2, where we prove a new quanti-
zation theorem for scalable frames.

Our approach to proving Theorem 1.3 in Section 5 is based on reducing the problem of
sampling continuous frames into a different problem of partitioning discrete frames, which
is solved using the recent results of Marcus, Spielman, and Srivastava in their solution
of the Kadison-Singer problem [MSS]. In [BCEK], Balan, Casazza, Edidin, and Kutyniok
introduce problems of determining when a tight frame for a Hilbert space may be partitioned
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into subsets each of which are frames for the Hilbert space and what are the optimal such
decompositions. The notion of an optimal decomposition depends on the application, but
one natural way to consider a partition of a tight frame into subsets as optimal is if each of
the lower frame bounds of the subsets are as big as possible and each of the upper frame
bounds of the subsets are as small as possible. In that respect, the following theorem, which
is essentially Lemma 2 in Nitzan, Olevskii, and Ulanovskii’s paper [NOU], proves that there
exists uniform upper and lower frame bounds for the optimal decompositions of tight frames.
They used this result to then prove that for every subset S ⊂ R of finite Lebesgue measure,
there exists a discrete set Λ ⊂ R such that the exponentials (eiλt)λ∈Λ form a frame of L2(S).
We include a proof of Theorem 1.7 in Section 3 for completeness.

Theorem 1.7. There exist uniform constants A,B > 0 such that every tight frame of vectors
in the unit ball of a finite dimensional Hilbert space H with frame bound greater than 1
can be partitioned into a collection of frames of H each with lower frame bound A and
upper frame bound B. Furthermore, there exist sequences of constants (An)n∈N, (Bn)n∈N
with limn→∞An = limn→∞Bn = 1 such that for every n ∈ N, every tight frame of vectors
in H with norms at most n−1 and frame bound greater than 1 has a subset with lower frame
bound An and upper frame bound Bn.

At first glance, it may seem obvious that a highly redundant frame is the union of less
redundant frames, but in a high dimensional Hilbert space it can be very tricky to determine
how to partition the frame vectors so that each set in the resulting partition has a uniformly
high lower frame bound and uniformly low upper frame bound. Furthermore, we prove that
the corresponding question for bases is false. That is, there does not exist a uniform constant
A such that every finite unit norm tight frame has a subset which is a basis and has lower
Riesz bound A. Using this finite dimensional result, we prove the following generalization
at the end of Section 3.

Corollary 1.8. Let A,B > 0 be the constants given in Theorem 1.7. Then every tight frame
of vectors in the unit ball of a separable Hilbert space H with frame bound greater than 1
can be partitioned into a finite collection of frames of H each with lower frame bound A and
upper frame bound B.

The proof of Theorem 1.7 relies on the recent solution of the Kadison-Singer problem
by Marcus, Spielman, and Srivastava [MSS]. The Kadison-Singer problem [KS] was known
to be equivalent to many open problems such as the Feichtinger conjecture [CCLV], the
paving conjecture [A], Weaver’s conjecture [W], and the Bourgain-Tzafriri conjecture [BT].
Each of these problems can be thought of in some ways as determining when a set with
some property can be uniformly partitioned into sets with a desired property. Naturally, the
frame partition problem falls into this category as well, and it was noted in [BCEK] that the
problem of partitioning a large frame into smaller frames is related to these famous problems.
In [MSS], the authors directly prove Weaver’s conjecture and hence prove all the equivalent
problems as well. We note that the proof of Theorem 1.7 doesn’t actually use Weaver’s
conjecture or any of its equivalent formulations, but instead uses the stronger result proved
in [MSS]. The main reason for this is that Weaver’s conjecture concerns partitioning in a
way that reduces an upper bound, but we need to reduce an upper bound while maintaining
a relatively close lower bound. The Marcus, Spielman, Srivastava result allows partitioning
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in a way that divides both the upper and lower frame bound almost perfectly in half. Marcin
Bownik has recently written a survey [B] on connections between continuous frames and the
Kadison-Singer problem which includes our solution to the discretization problem as well as
extensions of Lyapunov’s theorem to discrete frames [AW] and continuous frames[B2].

We recommend the textbook [C] for a reference on frames and continuous frames from
a mathematical perspective, and we recommend the textbook [AAG2] for a reference on
frames and continuous frames from a physics perspective. We include applications of the
discretization and partitioning theorems in Section 2. We prove the frame partitioning
theorem in Section 3. We include lemmas about discrete frames in Section 4. We prove the
discretization theorem in Section 5.

2. Applications

We include here some applications of the discretization and partition theorems, two of
which are new theorems and one is a quick proof of a known theorem.

2.1. Scalable Frames. A collection of unit vectors (xi)i∈I in H is said to be a scalable
frame if there exist scalars (ci)i∈I such that (cixi)i∈I is a Parseval frame for H [KOPT].
As one of the steps toward solving the discretization problem, we prove in Theorem 5.4
that there are universal constants A and B such that if (xi)i∈I is a scalable frame, then
(xi)i∈I can be sampled to form a frame with lower frame bound A and upper frame bound
B. One way to think about this is in terms of quantization. A scalable frame can be
scaled to be Parseval, but suppose that we are restricted to using only integer coefficients
to scale the frame. Being able to sample (xi)i∈I to get a frame is equivalent to being able
to obtain a frame by scaling using only integer scalars. As quantization of frame coefficients
is an important aspect of frame theory [BPY], it is natural to consider scaling frames using
quantized scalars. The following result gives essentially that how well we can scale a frame
using quantized coefficients may be determined using only how fine a quantization we allow.
In particular, this is independent of both the dimension of the space and the number of
frame vectors.

Theorem 2.1. Let (An)n∈N and (Bn)n∈N with limAn = limBn = 1 be the scalars given in
Theorem 1.7. Let N ∈ N. If (xi)i∈I is a scalable frame in a finite dimensional Hilbert space
H then there exists scalars (ci)i∈I ⊆ {

√
m/N : m ∈ Z} such that (cixi)i∈I is a frame with

lower frame bound AN and upper frame bound BN .

Proof. Let (di)i∈I be scalars such that (dixi)i∈I is a Parseval frame. We first assume that
(di)i∈I are rational numbers with common denominator M ∈ N. Thus, ni := N2M2d2

i is an
integer for all i ∈ I. We consider the frame (yj)j∈J which consists of ni copies of N−1xi for
each i ∈ I. Thus, we have for x ∈ H that∑

j∈J

|〈x, yj〉|2 =
∑
i∈I

N2M2d2
i |〈x,N−1xi〉|2 = M2

∑
i∈I

|〈x, dixi〉|2 = M2‖x‖2.

Thus, (yj)j∈J is a tight frame of vectors with norm at most N−1 and frame bound M2 ≥ 1.
By Theorem 1.7 there is a subset (yj)j∈J0 with frame bounds AN and BN . For each i ∈ I let
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ci =
√
mi/N where mi is the number of copies of N−1xi in (yj)j∈J0 . This gives the following

calculation. ∑
i∈I

|〈x, cixi〉|2 =
∑
i∈I

mi|〈x,N−1xi〉|2 =
∑
j∈J0

|〈x, yj〉|2.

Thus, (cixi)i∈I is a frame with bounds AN , BN , the same bounds as (yj)j∈J0 .
We now consider the case that (di)i∈I are not all rational. Given ε > 0 we may approximate

the coefficients (di)i∈I with rational numbers and follow the previous argument to obtain
(ci)i∈I ⊆ {

√
m/N : m ∈ Z} such that (cixi)i∈I is a frame with lower frame bound (1+ε)−1AN

and upper frame bound (1+ε)BN . However, because there are only finitely many possibilities
for (ci)i∈I , some choice must work for all ε > 0. Thus, there exists (ci)i∈I ⊆ {

√
m/N : m ∈ Z}

such that (cixi)i∈I is a frame with lower frame bound AN and upper frame bound BN .
�

Theorem 2.1 gives that if there are scalars (di)i∈I such that (dixi)i∈I is Parseval then there
are scalars (ci)i∈I ⊆ {

√
m/N : m ∈ Z} such that (cixi)i∈I is a frame with lower frame bound

AN and upper frame bound BN . It is interesting to note that the scalars (ci)i∈I could be very
different from the scalars (di)i∈I . Indeed, quantizing (di)i∈I fails dramatically if we choose
(ci)i∈I to minimize |di − ci| for all i ∈ I, which results in a small `∞(I) distance between
the sequences (di)i∈I and (ci)i∈I . A small `2(I) distance between (di)i∈I and (ci)i∈I can be
used to compare the frames (dixi)i∈I and (cixi)i∈I [C2], but a small `∞(I) distance tells us
nothing.

2.2. Gabor Frames. One example of continuous frames that is of particular interest is that
of Gabor systems and the short time Fourier transform. We consider L2(R) to be the Hilbert
space of square integrable functions from R to C. For a, b ∈ R, we define the translation
operator Ta : L2(R)→ L2(R) and the modulation operator Mb : L2(R)→ L2(R) by

Tag(x) = g(x− a) and Mbg(x) = e2πibxg(x).

If g ∈ L2(R) then the short time Fourier transform with window function g is the map
Ψg : R2 → L2(R) given by

Ψg(a, b) = MbTag.

The short time Fourier transform with window function g is a tight continuous frame with
frame bound ‖g‖2. That is, ‖g‖2‖f‖2 =

∫ ∫
|
∫
f(x)e2πiωxg(x− t)dx|2dωdt for all f ∈ L2(R).

A Gabor frame of L2(R) is a frame of the form (MbnTamg)m,n∈Z where a, b > 0 and g ∈ L2(R).
That is, Gabor frames are formed by sampling the short time Fourier transform at a lattice
in R2. It is not always the case that (MbnTamg)m,n∈Z will be a frame, however by Theorem
1.3 we have the following corollary.

Corollary 2.2. For every non-zero g ∈ L2(R) there exists real numbers (ak, bk)
∞
k=1 such that

(e2πibkxg(x− ak))k∈N is a frame of L2(R).

2.3. Frames of exponentials. For each K > 0, Fourier series gives a Riesz basis of expo-
nentials for L2([−K

2
, K

2
]). In particular,

Kf =
∑
n∈Z

〈f, e2πi n
K
·〉e2πi n

K
· for all f ∈ L2([−K

2
,
K

2
]).
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If J ⊆ R is any bounded set, then J ⊆ I for some interval I ⊆ R . We can take the basis
of exponentials for L2(I) and restrict it to J to get a tight frame of exponentials for L2(J).
However, this does not work if J is unbounded. This leads to the question: When does L2(J)
have a frame of exponentials? Note that J must have finite measure for the exponentials to
be in L2(J). This was solved by Nitzan, Olevskii, and Ulanovskii, who used the same frame
partitioning theorem that we need as well [NOU].

Theorem 2.3. [Nitzan, Olevskii, and Ulanovskii 2016] If J ⊆ R has finite measure then
L2(J) has a frame of exponentials.

Unlike the short time Fourier transform, the Fourier transform is not a continuous frame.
However, if we consider the map Ψ : R→ L2(J) given by Ψ(x)(t) = e2πixt for all x ∈ R and
t ∈ J then Ψ has an analysis operator Θ : L2(J)→ L2(R) given by

Θ(f)(x) = 〈f,Ψ(x)〉 =

∫
t∈J

f(t)e2πixtd λ(t).

Thus, the analysis operator is the Fourier transform. The Fourier transform is an isometric
embedding, which means that Ψ is a continuous Parseval frame. Hence, by the discretization
theorem, Ψ may be sampled to give a frame of exponentials for L2(J) which gives Theorem
2.3 as a corollary. We note that Nitzan, Olevskii, and Ulanovskii prove further that the
sampling points in Theorem 2.3 may be taken to be discrete, which we cannot conclude
using only our techniques.

3. Frame Partitions

Our goal for this section is to prove Theorem 1.7, on uniformly partitioning frames. The
main ingredient of the proof is the following theorem of Marcus, Spielman, and Srivastava.

Theorem 3.1 (MSS Cor 1.5). Let (ui)
M
i=1 ⊆ H be a Bessel sequence with bound 1 and

‖ui‖2 ≤ δ for all i. Then for any positive integer r, there exists a partition {I1, ..., Ir} of [M ]
such that each (ui)i∈Ij , j = 1, ..., r is a Bessel sequence with bound

(1/
√
r +
√
δ)2

We will be applying Theorem 3.1 for r = 2 to partition a Parseval frame into two sets
with Bessel bound close to 1/2. Theorem 3.1 gives good control of the upper frame bound
when partitioning a Parseval frame, but we need to control the lower frame bound as well.
The following theorem can be applied to show that if a Parseval frame is partitioned into
two sets with upper frame bound close to 1/2 then the sets also have lower frame bound
close to 1/2.

Theorem 3.2 (BCMS Cor 4.6). Let P : `2(I) → `2(I) be the orthogonal projection onto a
closed subspace H ⊆ `2(I). Then for any subset J ⊂ I and δ > 0, TFAE

(1) {Pei}i∈J is a frame of H with frame bounds δ and 1− δ.
(2) {Pei}i∈Jc is a frame of H with frame bounds δ and 1− δ.
(3) Both {Pei}i∈J and {Pei}i∈Jc are Bessel with bounds 1− δ.
(4) Both {(I − P )ei}i∈J and {(I − P )ei}i∈Jc are Riesz sequences with lower bound δ.
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We will be repeatedly partitioning a frame using Theorem 3.1 and then applying a positive
self-adjoint invertible operator to the resulting sets. The following simple lemma allows us
to keep track of what the operators do to the frame bounds.

Lemma 3.3. Let (xj)j∈J be a Parseval frame of a Hilbert space H. Let T be a positive self
adjoint invertible operator on H. Then (Txj)j∈J is a frame of H with upper frame bound
‖T‖2 and lower frame bound ‖T−1‖−2

Proof. Let x ∈ H. To calculate the upper frame bound we have the following inequalities.∑
j∈J

|〈x, Txj〉|2 =
∑
j∈J

|〈Tx, xj〉|2 = ‖Tx‖2 ≤ ‖T‖2‖x‖2.

Thus ‖T‖2 is the upper frame bound. To calculate the lower frame bound we have the
following inequalities.

‖T−1‖−2‖x‖2 ≤ ‖Tx‖2 =
∑
j∈J

|〈Tx, xj〉|2 =
∑
j∈J

|〈x, Txj〉|2.

Thus, ‖T−1‖−2 is the lower frame bound.
�

We are now ready to prove the main result of this section. The first part appears essentially
as Lemma 2 in [NOU], but we include a proof here for completion as it is essentially the
uniform discretization problem for continuous frames with finite support.

Theorem 3.4. There exist uniform constants A,B > 0 such that every tight frame of vectors
in the unit ball of a finite dimensional Hilbert space H with frame bound greater than 1
can be partitioned into a collection of frames of H each with lower frame bound A and
upper frame bound B. Moreover, there exist sequences of constants (An)n∈N, (Bn)n∈N with
limn→∞An = limn→∞Bn = 1 such that for every n ∈ N, every tight frame of vectors in H
with norms at most n−1 and frame bound greater than 1 has a subset with lower frame bound
An and upper frame bound Bn.

Proof. We prove the first claim of the theorem and then discuss at the end how the proof
could be adapted to prove the moreover claim. For convenience, we will only consider tight
frames with frame bound at least 79. Then we will find a uniform constant B > 79 so that
every such tight frame can be partitioned into frames with upper frame bound B and lower
frame bound 79. Thus, any tight frame in the unit ball of a finite dimensional Hilbert space
with frame bound greater than 1 could be partitioned into a set of frames of H with upper
frame bound B and lower frame bound 1.

The proof will involve repeated application of Theorem 3.1 so that at each step we will
partition a frame into two frames with the same upper frame bound and same lower frame
bound. We will then choose one of those frames to partition further until we arrive at a set
which is close to being tight and has small upper frame bound. As we could do the same
procedure to the frames not chosen, we are able to partition our original frame into frames
which are close to being tight and have small upper frame bound.

Assume that (xj)j∈J0 is a tight frame in the unit ball of H with frame bound B0 ≥ 79.
We recursively define a decreasing sequence B0 > B1 > · · · > Bn by Bm+1 = 2−1Bm −
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21/2B
1/2
m − 1 for all 1 ≤ m < n where n ∈ N0 is such that 200 > Bn ≥ 79. Note that

79 = 2−1200 − 21/22001/2 − 1 and thus there is a unique n ∈ N0 such that 200 > Bn ≥ 79.
This implies as well that Bm+1 ≤ 79

200
Bm for all 1 ≤ m < n. We will choose by induction a

nested sequence of subsets J0 ⊇ J1 ⊇ ... ⊇ Jn so that if 1 ≤ m ≤ n, T0 is the identity, and

Tm is the frame operator of (T
−1/2
m−1 ...T

−1/2
1 B

−1/2
0 xj)j∈Jm then

(3.1) ‖T−1/2
m ...T

−1/2
0 B

−1/2
0 ‖2 ≤ B−1

m for 0 ≤ m ≤ n,

(3.2) ‖Tm‖ ≤ 2−1 + 21/2B−1/2
m +B−1

m for 1 ≤ m ≤ n,

(3.3) ‖T−1
m ‖ ≤ (2−1 − 21/2B−1/2

m −B−1
m )−1 for 1 ≤ m ≤ n.

For the base case m = 0 we have that (3.1), (3.2) and (3.3) are all trivially satisfied.
Let 0 ≤ m < n and assume that J0 ⊇ · · · ⊇ Jm have been chosen to satisfy (3.1),

(3.2), and (3.3). As Tm is the frame operator of (T
−1/2
m−1 ...T

−1/2
1 B

−1/2
0 xj)j∈Jm we have that

(T
−1/2
m ...T

−1/2
1 B

−1/2
0 xj)j∈Jm is a Parseval frame. Furthermore, ‖T−1/2

m ...T
−1/2
1 B

−1/2
0 xj‖ ≤ B−1

m

for all j ∈ Jm by (3.1), thus we may apply Theorem 3.1 with r = 2 to obtain Jm+1 ⊆
Jm such that both (T

−1/2
m ...T

−1/2
1 B

−1/2
0 xj)j∈Jm+1 and (T

−1/2
m ...T

−1/2
1 B

−1/2
0 xj)j∈Jm\Jm+1 have

Bessel bounds 2−1 + 21/2B
−1/2
m + B−1

m . As Bm ≥ 200, we have that this bound is smaller

than 1. By Theorem 3.2 we have that (T
−1/2
m ...T

−1/2
1 B

−1/2
0 xj)j∈Jm+1 has lower frame bound

2−1 − 21/2B
−1/2
m − B−1

m > 0. Thus the frame operator Tm+1 of (T
−1/2
m ...T

−1/2
1 B

−1/2
0 xj)j∈Jm+1

has ‖Tm+1‖ ≤ 2−1 +21/2B
−1/2
m +B−1

m and ‖T−1
m+1‖ ≤ (2−1−21/2B

−1/2
m −B−1

m )−1 which satisfies
inequality (3.2) and (3.3). We have that

‖T−1/2
m+1 ...T

−1/2
1 B

−1/2
0 ‖2 ≤ ‖T−1/2

m+1 ‖2‖T−1/2
m ...T

−1/2
1 B

−1/2
0 ‖2

≤ ‖T−1/2
m+1 ‖2B−1

m by (3.1)

= ‖T−1
m+1‖B−1

m as Tm+1 is a positive operator

≤ (2−1 − 21/2B−1/2
m −B−1

m )−1B−1
m by (3.3)

= (2−1Bm − 21/2B1/2
m − 1)−1 = B−1

m+1

Thus, the inequality (3.1) is satisfied and our induction is complete.

We have that (T
−1/2
n ...T

−1/2
1 B

−1/2
0 xj)j∈Jn is a Parseval frame and that 79 ≤ Bn < 200. By

Lemma 3.3 we have that (xj)j∈Jn is a frame with upper frame bound ‖T 1/2
n ...T

1/2
1 B

1/2
0 ‖2 and

lower frame bound ‖T−1/2
n ...T

−1/2
1 B

−1/2
0 ‖−2. By (3.2), the upper frame bound of (xj)j∈Jn is

at most

‖T 1/2
n ...T

1/2
1 B

1/2
0 ‖2 ≤ ‖Tn‖...‖T1‖B0 ≤ B0

∏
0≤m<n

(2−1 + 21/2B−1/2
m +B−1

m ) =: B.

By (3.3), the lower frame bound of (xj)j∈Jn is at least

‖T−1
n ‖−1...‖T−1

1 ‖−1B0 ≥ B0

∏
0≤m<n

(2−1 − 21/2B−1/2
m −B−1

m ) = B0

∏
0≤m<n

Bm+1B
−1
m = Bn =: A.

We now have an upper frame bound B and lower frame bound A for (xj)j∈Jn . If there
exists a constant C such that the ratio of the frame bounds B/A is uniformly bounded by
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C, then we would have a lower frame bound of A = Bn ≥ 79 and an upper frame bound of
B ≤ AC ≤ 200C. This would prove that every tight frame of vectors in the unit ball of a
finite dimensional Hilbert with frame bound greater than 79 can be partitioned into frames
each of which has upper frame bound 200C and lower frame bound 79. Thus, all we need
to prove is that B/A is uniformly bounded. We have that

ln(B/A) = ln(
∏ 2−1 + 21/2B

−1/2
m +B−1

m

2−1 − 21/2B
−1/2
m −B−1

m

)

= ln(
∏ 1 + 23/2B

−1/2
m + 2B−1

m

1− 23/2B
−1/2
m − 2B−1

m

)

≤ ln(
∞∏
m=0

1 + 23/2( 79
200

)
m/2

79−1/2 + 2( 79
200

)
m

79−1

1− 23/2( 79
200

)
m/2

79−1/2 − 2( 79
200

)
m

79−1
)

=
∞∑
m=0

ln(1 + 23/2( 79
200

)
m/2

79−1/2 + 2( 79
200

)
m

79−1)

−
∞∑
m=0

ln(1− 23/2( 79
200

)
m/2

79−1/2 − 2( 79
200

)
m

79−1)

As the series
∑∞

m=0 23/2( 79
200

)
m/2

79−1/2 + 2( 79
200

)
m

79−1 is convergent, we have that both
series in the last equality are convergent. Thus, B/A is uniformly bounded.

We have proven that every tight frame of vectors in the unit ball of a finite dimensional
Hilbert space H with frame bound greater than 1 can be partitioned into a collection of
frames of H each with lower frame bound A and upper frame bound B. As part of the
proof, we implicitly showed that for all ε > 0 there exists aε, bε, Dε > 0 such that any tight
frame of vectors in the unit ball of a finite dimensional Hilbert space with frame bound
greater than Dε may be partitioned into frames with frame bounds aε < bε ≤ Dε such
that bε/aε < 1 + ε. We now show how this can be used to prove the moreover claim. For
1 ≤ n ≤ D1 we let An = A and Bn = B. For each n > D1 we let εn > 0 to be the
smallest value such that Dεn ≤ n. Set Bn = 1 + n−1 and An = Bn(1 + εn)−1. Note that
limAn = limBn = 1. Let N ∈ N. We now need to show that every tight frame of vectors
with norm at most N−1 and frame bound greater than 1 contains a subset with frame bounds
AN and BN .

Let (xj)j∈J be a tight frame of vectors with norm at most N−1 and frame bound greater
than 1. Thus, (Nxj)j∈J is a tight frame of vectors in the unit ball of H with frame bound
greater than DεN and hence may be partitioned into frames with frame bounds aεN and
bεN . Thus, there is a partition of J into J1, ..., JM such that (xj)j∈Jn is a frame with bounds
aεNN

−2 and bεNN
−2 for all 1 ≤ n ≤ M . Choose 1 ≤ m ≤ M such that 1 is an upper

frame bound of (xj)j∈∪1≤n<mJn , but 1 is not an upper frame bound of (xj)j∈∪1≤n≤mJn . Note
that (xj)j∈Jm has upper frame bound bεNN

−2 < N−1. Thus, (xj)j∈∪1≤n≤mJn has upper frame
bound BN = 1 + N−1 as it is the union of a frame with upper frame bound 1 with a frame
with upper frame bound N−1. For all 1 ≤ n ≤ m, the ratio of the frame bounds for (xj)j∈Jn
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is at most 1 + εN , and thus the ratio of the frame bounds for (xj)j∈∪1≤n≤mJn is also at most
1 + εN . Hence, (xj)j∈∪1≤n≤mJn has lower frame bound AN = BN(1 + εN)−1.

�

Theorem 3.4 is stated only for tight frames with frame bound greater than 1. The following
corollary applies to partitioning any frame with lower frame bound greater than 1.

Corollary 3.5. Let (fj)j∈J be a frame of a Hilbert space H with upper frame bound B0 and
lower frame bound A0 ≥ 1 such that ‖fj‖ ≤ 1 for all j ∈ J then (fj)j∈J can be partitioned
into a collection of frames of H each with lower frame bound A and upper frame bound
BB0A

−1
0 . Where A and B are the constants given in Theorem 3.4.

Proof. Let T be the frame operator of (fj)j∈J . Then ‖T‖ ≤ B0 and ‖T−1‖ ≤ A−1
0 . We have

that (A
1/2
0 T−1/2fj)j∈J is a tight frame with frame bound A0 ≥ 1. For all j ∈ J we have that

‖A1/2
0 T−1/2fj‖ ≤ A

1/2
0 ‖T−1‖1/2‖fj‖ ≤ 1. By Theorem 3.4 there is a partition (Jn)1≤n≤M of

J such that (A
1/2
0 T−1/2fj)j∈Jn has upper frame bound B and lower frame bound A for each

1 ≤ n ≤M . Let x ∈ H and 1 ≤ n ≤M . Then,∑
j∈Jn

|〈fj, x〉|2 =
∑
j∈Jn

|〈A1/2
0 T−1/2fj, A

−1/2
0 T 1/2x〉|2 ≤ B‖A−1/2

0 T 1/2x‖2 ≤ BA−1
0 B0‖x‖2

Thus, (fj)j∈Jn has upper frame bound BB0A
−1
0 . We now check the lower frame bound.∑

j∈Jn

|〈fj, x〉|2 =
∑
j∈Jn

|〈A1/2
0 T−1/2fj, A

−1/2
0 T 1/2x〉|2 ≥ A‖A−1/2

0 T 1/2x‖2 ≥ AA−1
0 A0‖x‖2 = A‖x‖2

Thus, (fj)j∈Jn has lower frame bound A.
�

We now restate and prove Corollary 1.8 from the Introduction, which proves that Theorem
3.4 holds for infinite frames as well.

Corollary 3.6. Let A,B > 0 be the constants given in Theorem 1.7. Then every tight frame
of vectors in the unit ball of a separable Hilbert space H with frame bound greater than 1
can be partitioned into a finite collection of frames of H each with lower frame bound A and
upper frame bound B.

Proof. Let (fj)
∞
j=1 be a tight frame of vectors in the unit ball of H with frame bound K > 1.

For each n ∈ N let Hn = span1≤j≤n{fj} and let (gj,n)j∈In be a finite collection of vectors in the
ball of Hn so that (fj)

n
j=1∪(gj,n)j∈In is a K-tight frame for Hn. By Theorem 1.7 we have that

(fj)
n
j=1 ∪ (gj,n)j∈In may be partitioned into a collection of frames ((fj)j∈Ji,n ∪ (gj,n)j∈Ii,n)Mn

i=1

of Hn each with lower frame bound A and upper frame bound B. We first obtain an upper
bound on Mn. For each 1 ≤ i ≤ Mn we have that (fj)j∈Ji,n ∪ (gj,n)j∈Ii,n has lower frame
bound A and that the entire collection of vectors (fj)

n
j=1 ∪ (gj,n)j∈In has frame bound K.

Thus, we have that AMn ≤ K. We let M = bK/Ac. Thus for each n ∈ N we may consider
the partitioning to be of the form ((fj)j∈Ji,n ∪ (gj,n)j∈Ii,n)Mi=1 where we allow for sets to be
empty.

For a given j ∈ N, we can have that the index 1 ≤ i ≤ M so that j ∈ Ji,n can change
depending on n. However, this can be stabilized by passing to a subsequence, which is what
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Pete Casazza refers to as the pinball principle. We choose a subsequence (kn)n∈N of N so
that for all j ∈ N there exists 1 ≤ mj ≤ M so that j ∈ Jmj ,kn for all 1 ≤ j ≤ n. For each
1 ≤ i ≤ M , we let Ji = lim infn→∞ Ji,kn . This gives that (Ji)1≤i≤M is a partition of N. We
have that (fj)j∈Ji has Bessel bound B as (fj)j∈Ji,n has Bessel bound B for all n ∈ N. We
now prove that if Ji 6= ∅ then (fj)j∈Ji is a frame of H with lower frame bound A. Let x ∈ H.
We have that limn→∞

∑
1≤j≤kn |〈fj, x〉|

2 = K‖x‖2. Hence, limn→∞
∑

j∈Ikn
|〈gj,kn , x〉|2 = 0 as

(fj)
n
j=1 ∪ (gj,n)j∈In has frame bound K. Thus for all 1 ≤ i ≤M we have that∑

j∈Ji

|〈fj, x〉|2 = lim
n→∞

∑
j∈Ji,kn

|〈fj, x〉|2

= lim
n→∞

∑
j∈Ji,kn

|〈fj, x〉|2 +
∑
j∈Ii,kn

|〈gj,kn , x〉|2

≥ A‖x‖2

Thus (fj)j∈Ji has lower frame bound A. �

We note here that it is not possible to improve Theorem 3.4 to show that every FUNTF
with sufficiently many vectors contains a good basis. A FUNTF (or finite unit norm tight
frame) is a finite collection of unit vectors which form a tight frame. If k ≥ n are natural
numbers then there always exists a FUNTF of k vectors for an n-dimensional Hilbert space
[BF], and FUNTFs are particularly useful in application due to their resilience to error
[GKK].

Theorem 3.7. For every ε > 0 and every B > 1, there exists an M > B and a FUNTF
(xi)1≤i≤M such that whenever I ⊂ [1,M ] is such that (xi)i∈I is a basis, then the lower Riesz
constant of (xi)i∈I is less than ε.

Proof. We modify slightly the construction of Casazza, Fickus, Mixon and Tremain from
Proposition 3.1 in [CFMT]. Let Hn be the 2n × 2n Hadamard matrix obtained via tensor
products of (

1 1
1 −1

)
.

Let F 1
n be the matrix obtained by multiplying the first 2n−1− 1 columns of Hn by

√
1/2n−1,

and the remaining 2n−1 + 1 columns by
√

1
2n−1(2n−1+1)

. Let F 2
n be the matrix obtained by

multiplying the first 2n−1 − 1 columns of Hn by 0 and the remaining 2n−1 + 1 columns by√
1

2n−1+1
. Let Fn be the 2n+1× 2n matrix obtained by “stacking” the F 1

n on top of F 2
n . Note

that the 2n columns of Fn are orthogonal, the rows have norm one, and the columns have
norm-squared 2. We denote the jth row of Hn by hj, the jth row of Fn by xj, and we note
that {gj = 2−n/2hj : 1 ≤ j ≤ 2n} is an orthonormal basis.

Let I ⊂ [1, 2n+1] be of size 2n. We show that (xi)i∈I cannot have good lower Riesz bound.
Case 1: If |I ∩ [1, 2n]| > 2n−1 − 1, then (xi)i∈I has lower Riesz bound less than 2

2n−1+1
.

Indeed, let J = I ∩ [1, 2n] and let P denote the orthogonal projection onto the first 2n−1− 1
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coordinates. Choose scalars (cj) such that∑
j∈J

|cj|2 = 1

and

P
(∑
j∈J

cjxj
)

= 0.

We then have,

‖
∑
j∈J

cjxj‖2 = ‖
∑
j∈J

(Id− P )cjxj‖2

=
2

2n−1 + 1
‖(Id− P )

∑
j∈J

cjgj‖2

≤ 2

2n−1 + 1
‖
∑
j∈J

cjgj‖2

=
2

2n−1 + 1
.

Thus the lower Riesz bound of (xj)j∈J (and hence of (xj)j∈I ) is no more than 2
2n−1+1

.

Case 2: If |I ∩ [1, 2n]| < 2n−1− 1, then (xi)i∈I cannot be a basis, since the projection onto
the first 2n−1 − 1 coordinates will not have 2n−1 − 1 non-zero vectors, so it will not span.

It remains to examine what happens in Case 3: |I ∩ [1, 2n]| = 2n−1 − 1. In this case,
|I ∩ [2n + 1, 2n+1]| = 2n−1 + 1. In particular, there exist xj and xk such that the last 2n−1

coordinates are constant multiples of one another. So, |〈xj, xk〉| = 2n−1−1
2n−1+1

. In particular, the
Riesz constant of just these two (norm-one) vectors goes to 0 as n→∞. Therefore, we can
choose n such that the lower Riesz constant of any basis is less than ε.

Finally, to finish the proof, we simply copy the FUNTF constructed above as many times
as necessary to create a large enough FUNTF. Any basis contained in the copy will also be
a basis in the original, so we can force the lower Riesz bound to be less than ε. �

4. Lemmas

In this section we collect some lemmas on frames which will be necessary for solving the
discretization problem in Section 5. The lemmas on continuous frames that we need will be
presented in Section 5.

Lemma 4.1. Let (fj)j∈J be a C-Bessel sequence in an N-dimensional Hilbert space H. Let
M ∈ N and J1, ..., JM be a partition of J . For each 1 ≤ K < M , there exists 1 ≤ n1 < ... <
nK ≤M so that (fj)j∈Jnk

is CN/(M + 1−K)-Bessel for each 1 ≤ k ≤ K.

Proof. For a set I ⊆ J we let TI be the frame operator of (fj)j∈I . For any choice of an
orthonormal basis (ei)

N
i=1 we have that

(4.1) trace(TI) =
N∑
i=1

∑
j∈I

|〈ei, fj〉|2 =
∑
j∈I

‖fj‖2.
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As TI is a positive self-adjoint operator, we may choose (ei)
N
i=1 to be an orthonormal basis of

eigenvectors of TI , and hence (4.1) gives that
∑

j∈I ‖fj‖2 is equal to the sum of the eigenvalues

of TI . For J = I, we have that the sum of the eigenvalues of TJ is
∑N

i=1

∑
j∈J |〈ei, fj〉|2 ≤ CN

as (fj)j∈J is C-Bessel. Thus we may choose K different n ∈ N so that the sum of the
eigenvalues of TJn is at most CN/(M + 1−K). In particular, each of the eigenvalues of TJn
is at most CN/(M + 1−K) and (fj)j∈Jn is CN/(M + 1−K) Bessel. �

Corollary 4.2. Let P ∈ N. For 1 ≤ p ≤ P , let (fp,j)j∈Jp be a Cp-Bessel sequence in an
Np-dimensional Hilbert space. Let M ∈ N and Jp1 , ..., J

p
M be a partition of Jp. Then there

exists 1 ≤ n ≤M such that the sequence (fp,j)j∈Jp
n

is 4pCpNp/M-Bessel for each 1 ≤ p ≤ P .

Proof. Without loss of generality we may assume that 2P+1 < M . Indeed, for 1 ≤ p ≤ P , if
M ≤ 2p+1 then (fp,j)j∈Jp

n
is automatically 4pCpNp/M -Bessel for all p.

We let M1 = M if M is even, and we let M1 = M − 1 if M is odd. By Lemma 4.1
we may choose {n1, ..., nM1/2} such that (f1,j)j∈J1

ni
is 2CN/M1-Bessel for all 1 ≤ i ≤ M1/2.

Continuing, we let M2 = M1/2 if M1/2 is even, and we let M2 = M1/2 − 1 if M1/2 is
odd. We can then choose half of the set {n1, ..., nM1/2} (without loss of generality, it is
the first half) such that (f2,j)j∈J2

ni
is 22CN/M2-Bessel for all 1 ≤ i ≤ M2/2. We then let

M3 = M2/2 if M2/2 is even, and we let M3 = M2/2 − 1 if M2/2 is odd. Without loss of
generality, we have that (f3,j)j∈J3

ni
is 23CN/M3-Bessel for all 1 ≤ i ≤ M3/2. Continuing in

this manner we get even natural numbers M1, ...,MP with 2p−1Mp ≤ M ≤ 2pMp for each
1 ≤ p ≤ P such that (fp,j)j∈Jp

ni
is 2pCN/Mp-Bessel for all 1 ≤ i ≤Mp/2, and hence (fp,j)j∈Jp

ni

is 4pCN/M -Bessel for all 1 ≤ i ≤ Mp/2. Thus, we may take the sets Jpn1
as 2P+1 < M and

2P−1MP ≤M ≤ 2PMP implies that 1 ≤MP . �

We give a quick example showing that the estimate in Lemma 4.1 is sharp for K = 1. Let
C > 0 and let N,M ∈ Z such that N divides M . Let (ei)

N
i=1 be an orthonormal basis of an

N -dimensional Hilbert space H. Consider the C-tight frame which consists of M/N copies

of
√

CN
M
ei for each 1 ≤ i ≤ N . As there are N choices for 1 ≤ i ≤ N , we have that the frame

has M vectors. Thus if we partition the frame into singletons we have that each singleton is
CN
M

-Bessel.
The following lemma is obvious for Hilbert spaces, but we state it separately because it

will be important in obtaining the lower frame bound in Theorem 5.4.

Lemma 4.3. Let ε > 0 and N ∈ N with N ≥ ε−2. Let (Hj)
N
j=1 be a sequence of finite

dimensional mutually orthogonal subspaces of a Hilbert space H. Then for every x ∈ H
there exists 1 ≤ n ≤ N such that ‖PHnx‖ ≤ ε‖x‖ where PHn is the orthogonal projection
onto Hn. Furthermore, if N is even and N ≥ 2ε−2 then for every x ∈ H there exists
1 ≤ n < N such that ‖PHn⊕Hn+1x‖ ≤ ε‖x‖
Proof. For the sake of contradiction we assume that there exists x ∈ H with ‖PHj

x‖ > ε‖x‖
for all 1 ≤ j ≤ N . This gives the following contradiction,

‖x‖ ≥ (
N∑
j=1

‖PHj
x‖2)1/2 > (

N∑
j=1

ε2‖x‖2)1/2 = N1/2ε‖x‖ ≥ ‖x‖

.
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For the furthermore case, we let H0
n = H2n−1 ⊕ H2n for all n ∈ N and then apply the

previous case to N/2 ∈ N and (H0
j )
N/2
j=1 . �

Lemma 4.4. Let H0 and H1 be Hilbert spaces and let (fj)j∈J ⊂ H0 ⊕ H1. Suppose that
(PH1fj)j∈J ⊆ H1 has upper frame bound K and lower frame bound k and that (PH0fj)j∈J
has Bessel bound c. Then for all x ∈ H0 ⊕H1,∑

j∈J

|〈fj, x〉|2 ≤ K‖PH1x‖2 + c‖PH0x‖2 + 2K1/2c1/2‖PH1x‖‖PH0x‖

and ∑
j∈J

|〈fj, x〉|2 ≥

(∑
j∈J

|〈fj, PH1x〉|2
)
− 2K1/2c1/2‖PH1x‖‖PH0x‖

≥ k‖PH1x‖2 − 2K1/2c1/2‖PH1x‖‖PH0x‖.

Proof. We first calculate the upper bound.∑
j∈J

|〈fj, x〉|2 =
∑
j∈J

|〈fj, PH1x+ PH0x〉|2

≤
∑
j∈J

|〈fj, PH1x〉|2 + |〈fj, PH0x〉|2 + 2|〈fj, PH0x〉〈fj, PH1x〉|

≤

(∑
j∈J

|〈fj, PH1x〉|2 + |〈fj, PH0x〉|2
)

+ 2

(∑
j∈J

|〈fj, PH0x〉|2
)1/2(∑

j∈J

|〈fj, PH1x〉|2
)1/2

=

(∑
j∈J

|〈PH1fj, PH1x〉|2 + |〈PH0fj, PH0x〉|2
)

+ 2

(∑
j∈J

|〈PH0fj, PH0x〉|2
)1/2(∑

j∈J

|〈PH1fj, PH1x〉|2
)1/2

≤ K‖PH1x‖2 + c‖PH0x‖2 + 2K1/2c1/2‖PH1x‖‖PH0x‖
We now calculate the lower bound.∑

j∈J

|〈fj, x〉|2 =
∑
j∈J

|〈fj, PH1x+ PH0x〉|2

≥
∑
j∈J

|〈fj, PH1x〉|2 + |〈fj, PH0x〉|2 − 2|〈fj, PH0x〉〈fj, PH1x〉|

≥

(∑
j∈J

|〈fj, PH1x〉|2
)
− 2

(∑
j∈J

|〈fj, PH0x〉|2
)1/2(∑

j∈J

|〈fj, PH1x〉|2
)1/2

=
∑
j∈J

|〈fj, PH1x〉|2 − 2

(∑
j∈J

|〈PH0fj, PH0x〉|2
)1/2(∑

j∈J

|〈PH1fj, PH1x〉|2
)1/2

≥
∑
j∈J

|〈fj, PH1x〉|2 − 2K1/2c1/2‖PH1x‖‖PH0x‖

≥ k‖PH1x‖2 − 2K1/2c1/2‖PH1x‖‖PH0x‖
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�

Lemma 4.5. Let ε > 0 and ε1 = 3ε + 2(2ε)1/2(1 + ε)1/2. Suppose (fj)j∈J ⊂ H0 ⊕ H1 is a
(1 + ε)-Bessel sequence and (PH1fj)j∈J ⊂ H1 has lower frame bound 1− ε. Then there exists
(gi)i∈I ⊆ H0 such that (gi)i∈I ∪ (fj)j∈J is (1 + ε1)-Bessel and has lower frame bound (1− ε1)
on H0 ⊕H1.

Proof. Let (hi)i∈I ⊂ H0⊕H1 such that (hi)∪ (fj) is a (1 + ε)-tight frame. As, (PH1fj) ⊂ H1

has lower frame bound (1 − ε) and (PH1hi) ∪ (PH1fj) ⊂ H1 is (1 + ε)-tight, we have that
(PH1hi) is 2ε-Bessel. We will prove that (PH0hi)i∈I ∪ (fj)j∈J has upper frame bound (1 +ε1).
Let x ∈ H.∑
|〈PH0hi, x〉|2+

∑
|〈fj, x〉|2 = (1 + ε)‖x‖2 − (

∑
|〈(PH0 + PH1)hi, x〉|2 −

∑
|〈PH0hi, x〉|2)

≤ (1 + ε)‖x‖2 + (
∑
|〈PH1hi, x〉|2 + 2

∑
|〈PH1hi, x〉〈PH0hi, x〉|)

≤ (1 + ε)‖x‖2 + (
∑
|〈PH1hi, x〉|2 + 2(

∑
|〈PH1hi, x〉|2)1/2(

∑
|〈PH0hi, x〉|2)1/2)

≤ (1 + ε)‖x‖2 + (2ε+ 2(2ε)1/2(1 + ε)1/2)‖x‖2 ≤ (1 + ε1)‖x‖2

We now prove that (PH0hi)i∈I ∪ (fj)j∈J has lower frame bound (1 − ε1), which follows the
same argument as above. Let x ∈ H0 ⊕H1.∑
|〈PH0hi, x〉|2+

∑
|〈fj, x〉|2 = (1 + ε)‖x‖2 − (

∑
|〈(PH0 + PH1)hi, x〉|2 −

∑
|〈PH0hi, x〉|2)

≥ (1 + ε)‖x‖2 − (
∑
|〈PH1hi, x〉|2 + 2

∑
|〈PH1hi, x〉〈PH0hi, x〉|)

≥ (1 + ε)‖x‖2 − (
∑
|〈PH1hi, x〉|2 + 2(

∑
|〈PH1hi, x〉|2)1/2(

∑
|〈PH0hi, x〉|2)1/2)

≥ (1 + ε)‖x‖2 − (2ε+ 2(2ε)1/2(1 + ε)1/2)‖x‖2 ≥ (1− ε1)‖x‖2

�

5. Continuous frames and the discretization problem

Recall that a measurable function Ψ : X → H from a measure space with a σ-finite
measure µ to a separable Hilbert space H is called a continuous frame with respect to µ if
there exist constants A,B > 0 so that

(5.1) A‖x‖2 ≤
∫
|〈x,Ψ(t)〉|2dµ(t) ≤ B‖x‖2 ∀x ∈ H.

If A = B then the continuous frame is called tight and if A = B = 1 then the continuous
frame is called Parseval or a coherent state. We say that Ψ : X → H is a continuous
Bessel map if it does not necessarily have a positive lower frame bound A, but does have a
finite upper frame bound B, which is also called a Bessel bound. As with frames and Bessel
sequences in Hilbert spaces, a continuous frame or continuous Bessel map for a Hilbert space
induces a bounded positive operator T : H → H called the frame operator which is defined
by

(5.2) T (x) =

∫
〈x,Ψ(t)〉Ψ(t) dµ(t) ∀x ∈ H.
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We are integrating vectors in a Hilbert space and (5.2) is defined weakly in terms of the
Pettis integral. That is, for all x ∈ H, T (x) is defined to be the unique vector such that

(5.3) 〈T (x), y〉 =

∫
〈x,Ψ(t)〉〈Ψ(t), y〉 dµ(t) ∀y ∈ H.

It is sometimes more convenient to work with the inequalities in (5.1) and sometimes it
will be useful to work with the frame operator T . As with discrete frames, ‖T‖ = B where B
is the optimal upper frame bound, and Ψ is a continuous frame if and only if T is invertible
and in which case ‖T−1‖ = A−1 where A is the optimal lower frame bound. Given a frame
for a Hilbert space, it may be converted to a Parseval frame by applying the inverse of the
square root of the frame operator. The following lemma shows that this same technique
works for continuous frames.

Lemma 5.1. Let Ψ : X → H be a continuous frame with frame operator T : H → H. Then
T−1/2Ψ : X → H is a continuous Parseval frame.

Proof. As T is a positive self adjoint invertible linear operator, we have that the inverse of
its square root T−1/2 is well defined. For x ∈ X we have that

‖x‖2 =〈T (T−1/2x), T−1/2x〉 as T is self-adjoint

=

∫
〈T−1/2x,Ψ(t)〉〈Ψ(t), T−1/2x〉 dµ(t) by (5.3)

=

∫
〈x, T−1/2Ψ(t)〉〈T−1/2Ψ(t), x〉 dµ(t) as T is self-adjoint

=

∫
|〈x, T−1/2Ψ(t)〉|2 dµ(t)

Thus, T−1/2Ψ : X → H is a continuous Parseval frame. �

Continuous frames were developed by Ali, Antoine, and Gazeau in [AAG1] as a generaliza-
tion of coherent states and in their later textbook [AAG2] they asked the following question
which is now known as the Discretization Problem.

Problem 5.2 (The Discretization Problem). Let Ψ : X → H be a continuous frame. When
does there exist a countable set F ⊆ X such that (Ψ(t))t∈F ⊆ H is a frame of H?

The Discretization Problem essentially asks if one can always obtain a frame for a Hilbert
space from a continuous frame by sampling. A solution for certain types of continuous frames
was obtained by Fornasier and Rauhut using the theory of co-orbit spaces [FR].

The following lemma allows us to approximate any continuous Bessel map with a contin-
uous Bessel map having countable range.

Lemma 5.3. Let Ψ : X → H be a continuous Bessel map. For all ε > 0, there exists a
measurable partition (Xj)j∈J of X and (tj)j∈J ⊂ X such that tj ∈ Xj for all j ∈ J and
‖Ψ(t)−Ψ(tj)‖ < ε for all t ∈ Xj and∫ ∥∥∥∥∥Ψ(t)−

∑
j∈J

Ψ(tj)1Xj
(t)

∥∥∥∥∥ dµ(t) < ε.
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Proof. We first claim that we may assume that µ is non-atomic. Indeed, if (Ei)i∈I is a
collection of disjoint atoms such that X \ ∪i∈IEi is non-atomic, then Ψ is constant almost
everywhere on each Ei. Thus for each i ∈ I, there exists si ∈ Ei such that Ψ1Ei

= Ψ(si)1Ei

almost everywhere. Hence we would only need to prove the lemma for the non-atomic
measure space X \ ∪i∈IEi and the continuous Bessel map Ψ|X\∪i∈IEi

= Ψ −
∑

i∈I Ψ(t)1Ei
.

Thus, we assume without loss of generality that X is non-atomic.
Let ε > 0. As X is non-atomic and σ-finite, X may be partitioned into a sequence of

pairwise disjoint measurable subsets (Yj)j∈N so that µ(Yj) ≤ 1 for all j ∈ N. For all j ∈ N,
let (Hj

n)∞n=1 be a partition of Ψ(Yj) ⊆ H such that diam(Hj
n) < ε2−j for all n ∈ N. For each

j, n ∈ N choose tjn ∈ Ψ−1(Hj
n) ∩ Yj. Note that (Ψ−1(Hj

n) ∩ Yj)n∈N is a partition of Yj for all
j ∈ N and hence (Ψ−1(Hj

n)∩Yj)j,n∈N is a partition of X. We have that ‖Ψ(t)−Ψ(tjn)‖ < ε2−j

for all n, j ∈ N and t ∈ Ψ−1(Hj
n) ∩ Yj. We now estimate the following.∫ ∥∥∥∥∥Ψ(t)−

∑
j,n∈N

Ψ(tjn)1Ψ−1(Hj
n)∩Yj(t)

∥∥∥∥∥ dµ(t) =
∑
j,n∈N

∫
Ψ−1(Hj

n)∩Yj

∥∥Ψ(t)−Ψ(tjn)
∥∥ dµ(t)

≤
∑
j,n∈N

µ(Ψ−1(Hj
n) ∩ Yj)ε2−j =

∑
j∈N

µ(Yj)ε2
−j ≤ ε

Thus we may use (Ψ−1(Hj
n) ∩ Yj)j,n∈N as our partition of X and (tjn)j,n∈N as our sample

points. �

The following is a technical result that is needed in our proof of the discretization theorem,
which may be of independent interest. Recall that a collection of vectors (xi)i∈I in H is said
to be a scalable frame if there exist constants (ci)i∈I such that (cixi)i∈I is a Parseval frame
for H [KOPT]. The following result implies, in particular, that there are universal constants
A and B such that if (xi)i∈I is a scalable frame in the unit ball of H, then (xi)i∈I can be
sampled to form a frame with lower frame bound A and upper frame bound B. In order to
help the reader stay organized, there are several claims in the proof of the theorem, whose
proofs are separated out from the main text of the proof of the theorem. The proofs of the
claims end in �, while the end of the proof of the main theorem ends with �, as usual.

Theorem 5.4. There is a function g : (0, 1/256) → (0, 1) such that limε→0 g(ε) = 0 and if
(xn)∞n=1 ⊂ {x ∈ H : ‖x‖ ≤ 1} is such that there exist scalars (an)∞n=1 such that (anxn)∞n=1 is a
frame for H with bounds 1− ε and 1 + ε, then there exists f : N→ N such that (xf(n))

∞
n=1 is

a frame for H with bounds A(1− g(ε)) and 2B(1 + g(ε)), where A and B are the constants
given in Theorem 3.4.

Proof. We will not explicitly define the functions f and g, though a careful reading of the
proof will give exact values for g. The general strategy of the proof is to decompose H into
pairwise orthogonal subspaces and sample (xn) in order to obtain frames for the subspaces,
while controlling the leakage into the other subspaces.

Let 0 < ε < 1/256. We begin by noting that we may assume that (an)∞n=1 are non-negative
real numbers and by perturbing (and replacing ε by a slightly larger value, which we still
denote as ε) we may assume further that (an)∞n=1 are non-negative rational. Next, we can
decompose H in the following way.



THE DISCRETIZATION PROBLEM FOR CONTINUOUS FRAMES 19

Claim 5.5. Let K−1 = −1 and K0 = 0. There exists pairwise orthogonal subspaces (Hn)∞n=1,
an increasing sequence of natural numbers (Kn)∞n=1 and a decreasing sequence of real numbers
(εn)∞n=1 converging to zero such that the following hold for all n ∈ N and 1 ≤ m ≤ n, where
ε′ = 6ε+ 4ε1/2(1 + 2ε)1/2.

(xj)j≤Kn−1 ⊂ ⊕j≤nHj(5.4)

for all x ∈ ⊕m≤j≤nHj, (1− 2ε)‖x‖2 ≤
∑

j∈(Km−2,Kn]

|〈x, xj〉|2a2
j ≤ (1 + ε)‖x‖2(5.5)

for all x ∈ ⊕m≤j≤nHj,
∑

j 6∈(Km−2,Kn]

|〈x, xj〉|2a2
j ≤ εn‖x‖2(5.6)

εnB(1 + ε′)(1− ε′)−2 dim(⊕j≤nHj) < ε′8−n(5.7)

Proof of claim 5.5. For the base case of n = 1 we have that (5.4) will be automatically
satisfied as we have set K0 = 0. We let H1 = 0, K1=1 and ε1 = ε/2, which trivially satisfies
(5.5), (5.6) and (5.7).

For the induction step we let k ∈ N and assume that (5.4), (5.5), (5.6), and (5.7) are
true for m ≤ n = k. We choose εk+1 < εk small enough so that (5.7) is satisfied. Let
Hk+1 = spanKk−1<i≤Kk

P(⊕j≤kHj)⊥xi. Thus, Hk+1 is orthogonal to ⊕j≤kHj and {xj}j≤Kk
⊆

⊕j≤k+1Hj which satisfies (5.4). As (ajxj)j∈N is Bessel and ⊕i≤k+1Hi is finite dimensional, we
may choose Kk+1 > Kk so that

∑
j>Kk+1

|〈x, xj)〉|2a2
j ≤ εk+1‖x‖2 for all x ∈ ⊕i≤k+1Hi. Let

m ≤ k + 1. As {xj}j≤Km−2 ⊆ ⊕j≤m−1Hj we have that 〈x, xj〉 = 0 for all x ∈ ⊕m≤i≤k+1Hi

and j ≤ Km−2; hence, (5.6) is true. We have that (5.5) follows from (5.6) as (ajxj)j∈N is a
frame with lower frame bound 1− ε and upper frame bound 1 + ε and εn < ε/2. Thus our
induction argument is complete. �

The spaces (Hn)∞n=1 are the building blocks for constructing our frame via sampling, but
we will need to group subspaces together in order to control the leakage between consecutive
subspaces using Lemma 4.3. To this end, let (δn)∞n=1 be a decreasing sequence of real numbers
and let (Mn)∞n=1 and (Nn)∞n=1 be sequences of odd numbers such that

M1 < M2 − 2 < M2 < N1 < N1 + 1 < M3 − 2 < M3 < N2 < N2 + 1 < M4 − 2 < · · ·(5.8)

Nn −Mn+1 − 4 > 2δ−2
n(5.9)

∞∑
n=1

δ2
n < ε2(5.10)

We construct our frame via sampling as follows. Fix r ∈ N. Since ε < 1/256, we can
choose D = Dr to be an integer multiple of the denominators of (a2

n)n∈(KMr−2,KNr ] so that

(5.11) D(1− 6ε− 4ε1/2(1 + 2ε)1/2) ≥ 1

(this choice of D will allow us to apply Corollary 3.5 in the sequel). Denote by (
√

1/Dfn)n∈I
the sequence of vectors comprised of Da2

j copies of
√

1/Dxj for each j ∈ (KMr−2, KNr ], where



20 DANIEL FREEMAN AND DARRIN SPEEGLE

I = Ir depends on r. We note here that for any x ∈ H,

∑
n∈I

|〈x,
√

1/Dfn〉|2 =

KNr∑
j=KMr−1

Da2j∑
i=1

|〈x, xj〉|2
1

D

=

KNr∑
j=KMr−1

|〈x, xj〉|2a2
j ,

so (
√

1/Dfn)n∈I has the same frame properties as (anxn)n∈(KMr−2,KNr ]. It will be necessary
in the sequel to recover the correspondence between fj and xn. So, we define

(5.12) br = b : I → (KMr−2, KNr ]

in such a way that

(1) fn = xb(n) for all n ∈ I, and
(2) #b−1(j) = Da2

j for all KMr−2 < j ≤ KNr

so that formally (fn)n∈I is the same sequence of vectors as (xb(n))n∈I .

By (5.4), (
√

1/Dfn)n∈I is a (1 + ε)-Bessel sequence in ⊕j≤Nr+1Hj, and by (5.5),

(P⊕Mr≤j≤NrHj

√
1/Dfn)n∈I

is a frame for⊕Mr≤j≤NrHj with lower frame bound 1−2ε. Therefore, we can apply Lemma 4.5

to obtain (gn)n∈J ⊂ ⊕j<MrHj ⊕HNr+1 such that ‖gn‖ ≤ 1/
√
D and (

√
1/Dfn)n∈I ∪ (gn)n∈J

is a frame for ⊕j≤Nr+1Hj with bounds 1− ε′ and 1 + ε′, where

ε′ = 6ε+ 4ε1/2(1 + 2ε)1/2.

By our choice of D in (5.11), we can apply Corollary 3.5 to the vectors (fn)n∈I∪(
√
Dgn)n∈J

to obtain a partition (Im ∪ Jm)Mm=1 of I ∪ J such that for each 1 ≤ m ≤ M , (fn)n∈Im ∪
(
√
Dgn)n∈Jm is a frame for ⊕j≤Nr+1Hj with constants A and B(1 + ε′)(1 − ε′)−1. For a set

P ⊂ I, we denote

P>k = {j ∈ P : b(j) > Kk},
where b is as defined in (5.12).

Claim 5.6. For each r ≥ 1 there exists m0 such that

for each k ∈ [Mr − 2, Nr], (P⊕j≤kHj
fn)n∈I>k

m0
has Bessel bound ε′2−r,

(5.13)

(P⊕j≤Mr−2Hj
fn)n∈Im0

has Bessel bound ε′2−r,

(5.14)

(P⊕j∈[Mr,Nr ]Hj
fn)n∈Im0

is a frame for ⊕j∈[Mr,Nr] Hj with bounds A,B(1 + ε′)(1− ε′)−1,

(5.15)

(fn)n∈Im0
has Bessel bound B(1 + ε′)(1− ε′)−1 on ⊕1≤i≤Nr+1 Hi.

(5.16)
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Proof of Claim 5.6. For each k ∈ [Mr−2, Nr], we have that (P⊕1≤i≤kHi
fj)j∈I>k is Dεk-Bessel

by (5.6). By Corollary 4.2 there exists 1 ≤ m0 ≤ M (which depends on r ∈ N) so that for
every k ∈ [Mr − 2, Nr], (P⊕i≤kHi

fj)j∈I>k
m0

has Bessel bound Dεk4
kdim(⊕i≤kHi)/M .

As each frame in the partition ((fj)j∈Ik∪(
√
Dgj)j∈Jk)1≤k≤M has upper frame bound B(1+

ε′)(1− ε′)−1 and there are M of them, we have that BM(1 + ε′)(1− ε′)−1 ≥ (1− ε′)D. Thus
we have for each k ∈ [Mr − 2, Nr] that

(P⊕i≤kHi
fj)j∈I>k

m0
has Bessel bound ε′2−k < ε′2−r, as

Dεk4
kdim(⊕i≤kHi)/M < B(1 + ε′)(1− ε′)−2εk4

kdim(⊕i≤kHi) < ε′2−k by (5.7),

which proves (5.13). When k = Mr − 2 we have that Im0 = I>Mr−2
m0

and hence,

(P⊕i≤Mr−2Hi
fj)j∈Im0

has Bessel bound ε′2−r,

which proves (5.14).

Equation (5.15) follows from the frame bounds of (fn)n∈Im ∪ (
√
Dgn)n∈Jm and the fact

that (gn)n∈Jm is orthogonal to ⊕j∈[Mr,Nr]Hj. Equation (5.16) follows immediately from con-
struction and (5.4). �

For each r ∈ N, we define I(r) to be the Im that is guaranteed to exist in Claim 5.6.
To finish the proof, we show that (fn)n∈I(r),r∈N is a frame with bounds 2B(1 + ε2) and

A− (A+ 2)ε2 − 4B(1 + ε2)ε
1/2
2 , where

ε2 = (1 + ε′)(1− ε′)−1 − 1 + ε′ + 2(B(1 + ε′)(1− ε′)−1ε′)1/2.

Proof of Upper Bound. Let x ∈ H with ‖x‖ = 1. Define a sequence of integers (qn)∞n=1 by
q1 = 0 and qn ∈ (Nn−1 + 1,Mn+1 − 2) for n ≥ 2. Let

I−(n) = {j ∈ I(n) : b(j) ≤ Kqn−1},
I+(n) = {j ∈ I(n) : b(j) > Kqn−1}.

First, note that if j ∈ I−(n), then fj ∈ ⊕1≤i≤qnHi by (5.4). Therefore, defining Hn
1 to be

⊕Mn−1≤i≤qnHi we can apply (5.14), (5.16) and Lemma 4.4 to obtain that

I :=
∞∑
n=1

∑
j∈I−(n)

|〈fj, x〉|2

≤
∞∑
n=2

(
B(1 + ε′)(1− ε′)−1‖PHn

1
x‖2 + ε′2−n + 2

(
B(1 + ε′)(1− ε′)−1ε′2−n

)1/2‖PHn
1
x‖
)

≤ B(1 + ε′)(1− ε′)−1 + ε′ + 2
(
B(1 + ε′)(1− ε′)−1ε′

)1/2
( ∞∑
n=2

2−n
)1/2( ∞∑

n=2

‖PHn
1
x‖2

)1/2

≤ B(1 + ε′)(1− ε′)−1 + ε′ + 2
(
B(1 + ε′)(1− ε′)−1ε′

)1/2

≤ B(1 + ε2)
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Similarly, for j ∈ I+(n), fj = xb(j) ∈ ⊕1≤i≤Nn+1Hi by (5.4) as j ≤ KNn . Therefore,
defining Hn

1 = ⊕qn≤i≤Nn+1Hi, we can apply (5.13), (5.16) and Lemma 4.4 to obtain

II :=
∞∑
n=1

∑
j∈I+(n)

|〈fj, x〉|2

≤
∞∑
n=1

(
B(1 + ε′)(1− ε′)−1‖PHn

1
x‖2 + ε′2−n + 2

(
B(1 + ε′)(1− ε′)−1ε′2−n

)1/2‖PHn
1
x‖
)

≤ B(1 + ε′)(1− ε′)−1 + ε′ + 2
(
B(1 + ε′)(1− ε′)−1ε′

)1/2
( ∞∑
n=1

2−n
)1/2( ∞∑

n=1

‖PHn
1
x‖2

)1/2

≤ B(1 + ε′)(1 + ε′)−1 + ε′ + 2
(
B(1 + ε′)(1− ε′)−1ε′

)1/2

≤ B(1 + ε2),

Therefore, we can conclude that

∞∑
n=1

∑
j∈I(n)

|〈fj, x〉|2 = I + II

≤ 2B(1 + ε2).

�

Proof of Lower Bound. Let x ∈ H, ‖x‖ = 1. By (5.9) and Lemma 4.3, for each n there
exists pn ∈ (Mn+1, Nn − 2] such that ‖PHpn⊕Hpn+1x‖ ≤ δn, where δn were chosen to satisfy
(5.9) and (5.10). Let

y1 = P⊕j<p1
Hj
x

and for n ≥ 2, let

yn = P⊕pn−1+1<j<pnHj
x.

Note that

‖x−
∑
n

yn‖ <
(∑

n

δ2
n

)1/2
< ε < ε2(5.17)

1− ε2 < 1− ε < ‖
∑
n

yn‖ ≤ 1, and(5.18)

∀y ∈ ⊕pn−1+1<i<pnHi,
∑
j∈I(n)

|〈fj, y〉|2 ≥ A‖y‖2 by (5.15).(5.19)

Next, we define

I−1(n) = {j ∈ I(n) : b(j) ≤ Kpn−1},
I0(n) = {j ∈ I(n) : Kpn−1 < b(j) ≤ Kpn}, and

I1(n) = {j ∈ I(n) : b(j) > Kpn},

where b is the map defined in (5.12).
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We compute

∞∑
n=1

∑
j∈I(n)

|〈fj,
∞∑
m=1

ym〉|2 ≥
∞∑
n=1

∑
j∈I0(n)

|〈fj,
∞∑
m=1

ym〉|2

=
∞∑
n=1

∑
j∈I0(n)

|〈fj,
n∑

m=1

ym〉|2 as fj ∈ ⊕k≤pn+1Hk for j ∈ I0(n) and yn+1 ∈ ⊕pn+1−1
k=pn+2Hk,

≥
∞∑
n=1

( ∑
j∈I0(n)

|〈fj, yn〉|2 − 2
∑

j∈I0(n)

|〈fj, yn〉||〈fj,
∑
m<n

ym〉|
)

≥
∞∑
n=1

( ∑
j∈I0(n)

|〈fj, yn〉|2 − 2
( ∑
j∈I0(n)

|〈fj, yn〉|2
)1/2( ∑

j∈I0(n)

|〈fj,
∑
m<n

ym〉|2
)1/2
)

≥
∞∑
n=1

( ∑
j∈I0(n)

|〈fj, yn〉|2 − 2(B(1 + ε′)(1− ε′)−1)1/2‖yn‖(ε′2−n)1/2

)
by (5.14) and (5.16),

≥
( ∞∑
n=1

∑
j∈I0(n)

|〈fj, yn〉|2
)
− 2(B(1 + ε′)(1− ε′)−1ε′)1/2

( ∞∑
n=1

‖yn‖2

)1/2( ∞∑
n=1

2−n
)1/2

>

( ∞∑
n=1

∑
j∈I0(n)

|〈fj, yn〉|2
)
− ε2

≥
∞∑
n=1

( ∑
j∈I0(n)

|〈fj, yn〉|2 +
( ∑
j∈I1(n)

|〈fj, yn〉|2 − ε′2−n‖yn‖2
)

+
( ∑
j∈I−1(n)

|〈fj, yn〉|2 − 0
))
− ε2

=
∞∑
n=1

( ∑
j∈I(n)

|〈fj, yn〉|2 − ε′2−n‖yn‖2

)
− ε2

≥
∞∑
n=1

(
A‖yn‖2 − ε′2−n‖yn‖2

)
− ε2 by (5.19)

> A‖
∞∑
n=1

yn‖2 − ε′ − ε2.

We conclude the proof by using the above estimate for
∑

j |〈fj,
∑

n∈N yn〉|2 to obtain a lower

frame bound for (fj)j∈I(n),n∈N.

∑
j

|〈fj, x〉|2 ≥
∑
j

|〈fj,
∑
n

yn〉|2 − 4B(1 + ε2)‖
∑
n

yn‖ ‖x−
∑
n

yn‖ by Lemma 4.4,

> A‖
∑
n

yn‖2 − ε′ − ε2 − 4B(1 + ε2)‖x−
∑
n

yn‖

= A(‖x‖2 − ‖x−
∑

yn‖2)− ε′ − ε2 − 4B(1 + ε2)‖x−
∑
m

ym‖
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> A‖x‖2 − Aε2
2 − ε′ − ε2 − 4B(1 + ε2)ε2 by (5.17).

Thus (fj)j∈I(n),n∈N has lower frame bound A− Aε′ − ε2
2 − ε2 − 4B(1 + ε2)ε2.

�

This concludes the proof of Theorem 5.4. �

Theorem 5.7. Let Ψ : X → H be a continuous Parseval frame such that ‖Ψ(t)‖ ≤ 1 for all
t ∈ X. If A,B > 0 are the uniform constants given in Theorem 3.4 then for all ε > 0 there
exists (si)i∈I ∈ XI such that (Ψ(si))i∈I is a frame of H with lower frame bound (1− ε)A and
upper frame bound 2(1 + ε)B.

Proof. Without loss of generality we assume that H is infinite dimensional. Let 1 > ε > 0.
Let ε0 > 0 such that g(ε0) < ε, where g is the function guaranteed to exist from Theorem
5.4.

By Lemma 5.3 there exists a partition (Xi)i∈N of X and (tj)j∈N ⊂ X such that tj ∈ Xi for
all j ∈ N and ‖Ψ(t)−Ψ(tj)‖ < ε0

6
for all t ∈ Xj and

∫ ∥∥Ψ(t)−
∑

i∈N Ψ(ti)1Xi
(t)
∥∥ dµ(t) < ε0

3
.

Let Φ : X → H be given by Φ :=
∑

Ψ(ti)1Xi
. We will prove that Φ is a continuous frame

with upper frame bound 1 + ε0 and lower frame bound 1− ε0. Let x ∈ H with ‖x‖ = 1. We
first estimate the lower frame bound.

‖x‖2 =

∫
|〈x,Ψ(t)〉|2dµ(t)

=

∫
|〈x, (Ψ(t)− Φ(t) + Φ(t))〉|2dµ(t)

≤
∫
|〈x,Φ(t)〉|2 + 2|〈x, (Ψ(t)− Φ(t))〉||〈x,Φ(t)〉|+ |〈x, (Ψ(t)− Φ(t))〉|2dµ(t)

≤
∫
|〈x,Φ(t)〉|2 + 2‖Ψ(t)− Φ(t)‖‖Φ(t)‖+ ‖Ψ(t)− Φ(t)‖2dµ(t)

≤
∫
|〈x,Φ(t)〉|2 + 2‖Ψ(t)− Φ(t)‖+ ‖Ψ(t)− Φ(t)‖ε0

3
dµ(t)

as ‖Φ(t)‖≤1 and ‖Ψ(t)− Φ(t)‖< ε0

3

≤
∫
|〈x,Φ(t)〉|2dµ(t) + 2(

ε0

3
) + (

ε0

3
)2

(
as

∫
‖Ψ(t)− Φ(t)‖dµ(t) <

ε0

3

)
<

∫
|〈x,Φ(t)〉|2dµ(t) + ε0

Thus, Φ has lower frame bound 1− ε0. We similarly estimate the upper frame bound.

‖x‖2 =

∫
|〈x,Ψ(t)〉|2dµ(t)

=

∫
|〈x, (Ψ(t)− Φ(t) + Φ(t))〉|2dµ(t)

≥
∫
|〈x,Φ(t)〉|2 − 2|〈x, (Ψ(t)− Φ(t))〉||〈x,Φ(t)〉|+ |〈x, (Ψ(t)− Φ(t))〉|2dµ(t)
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>

∫
|〈x,Φ(t)〉|2dµ(t)− 2(

ε0

3
) >

∫
|〈x,Φ(t)〉|2dµ(t)− ε0

Thus, Φ has upper frame bound 1 + ε0.
We have that for all x ∈ H,

∫
|〈x,Φ(t)〉|2dµ(t) =

∑
|〈x,Ψ(ti)〉|2µ(Xi). Thus, (

√
µ(Xi)Ψ(ti))i∈N

is a frame of H with lower frame bound 1 − ε0 and upper frame bound 1 + ε0. Therefore,
by Theorem 5.4, there exists a sequence of natural numbers I such that (Ψ(ti))i∈I is a frame
for H with bounds A(1− ε) and 2B(1 + ε), as desired. �

We now show that the complete solution to the discretization problem can be reduced to
the special case of Theorem 5.7. We restate and prove Theorem 1.3 that was presented in
the introduction.

Theorem 5.8. Let (X,Σ) be a measurable space such that every singleton is measurable and
let Ψ : X → H be measurable. There exists (tj)j∈J ∈ XJ such that (Ψ(tj))j∈J is a frame of H
if and only if there exists a positive, σ-finite measure ν on (X,Σ) so that Ψ is a continuous
frame of H with respect to ν which is bounded ν-almost everywhere.

Proof. We first assume that there exists a positive σ-finite measure ν on X so that Ψ : X →
H is a continuous frame of H with respect to ν which is bounded almost everywhere. By
passing to a measurable subset of X of full measure we may assume that Ψ is bounded. Let
T : H → H be the frame operator of Ψ. Note that T is a positive self-adjoint invertible
operator. Define Φ : X → H by Φ(x) = T−1/2Ψ(x). Thus, Φ is a continuous Parseval
frame by Lemma 5.1 and Φ is bounded as it is the composition of bounded functions. There
exists C > 0 such that ‖Φ(t)‖ ≤ C for all t ∈ X. We now define a measure ν0 on X by
ν0 = C2ν. Then, C−1Φ : X → H is a continuous Parseval frame with respect to ν0 such that
‖C−1Φ(t)‖ ≤ 1 for all t ∈ H. Thus, there exists (tj)j∈J ∈ XJ such that (C−1Φ(tj))j∈J is a
frame of H by Theorem 5.7. We have that (C−1T−1/2Ψ(tj))j∈J is a frame of H and hence
(Ψ(tj))j∈J is a frame of H.

We now assume that there exists (tj)j∈J ∈ XJ such that (Ψ(tj))j∈J is a frame of H. Note
that (Ψ(tj))j∈J is bounded as it is a frame. It is possible for some points to be sampled
multiple times. For t ∈ ∪j∈Jtj, we let nt = #{j ∈ J : t = tj}. We define a measure ν on
X by ν(A) =

∑
t∈A∩∪j∈J tj nt for all A ∈ Σ. As singletons are measurable, we have that ν

is a measure on (X,Σ) and the frame operator for the continuous frame Ψ : X → H with
respect to ν is the same as the frame operator of (Ψ(tj))j∈J . Thus, Ψ is a continuous frame
with respect to ν which is bounded on ∪j∈Jtj and ν(X \ ∪j∈Jtj) = 0. �
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[S] E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik, Naturwissenschaften 14
(1926), 664-666.

[W] N. Weaver, The Kadison-Singer problem in discrepancy theory, Discrete Math. 278 (2004), 227-239.

Department of Mathematics and Statistics, St Louis University, St Louis, MO 63103 USA
E-mail address: daniel.freeman@slu.edu

Department of Mathematics and Statistics, St Louis University, St Louis, MO 63103 USA
E-mail address: speegled@slu.edu


