
ar
X

iv
:1

40
3.

43
76

v1
  [

m
at

h.
FA

] 
 1

8 
M

ar
 2

01
4

THE METRIC GEOMETRY OF THE HAMMING CUBE AND

APPLICATIONS

F. BAUDIER, D. FREEMAN, TH. SCHLUMPRECHT, AND A. ZSÁK

Abstract. The Lipschitz geometry of segments of the infinite Hamming cube
is studied. Tight estimates on the distortion necessary to embed the seg-
ments into spaces of continuous functions on countable compact metric spaces
are given. As an application, the first nontrivial lower bounds on the C(K)-
distortion of important classes of separable Banach spaces, where K is a count-
able compact space in the family

{[0, ω], [0, ω · 2], . . . , [0, ω2], . . . , [0, ωk · n], . . . , [0, ωω ]} ,

are obtained.

1. introduction

1.1. Motivation and Background. Assume that one is given a Banach space Y
and a class C of metric spaces. Given an arbitrary metric space M in the class C, it
is natural to study the smallest distortion achievable when trying to embed M into
Y through a bi-Lipschitz embedding. This quite general, quantitative embedding
problem is an important topic in the nonlinear geometry of Banach Spaces. When
Y is a Hilbert space this problem is known as estimating the Euclidean distortion
of the given class. It is well recognized that being able to accurately estimate the
Euclidean distortion of some specific classes of metric spaces has tremendous and
far reaching applications in both mathematics and computer science. In this paper
we consider the general embedding problem when Y is the Banach space C(K), the
space of continuous functions on a compact topological space K. We will mainly
stay in the separable world and therefore consider only compact metric spaces K as
well as classes C contained in the class M of separable metric spaces. The theory is
clearly isometric and, although c0 is not isometric to a C(K)-space for any compact
space K, embeddings into c0 are related to those into C(K)-spaces. Indeed c0 is a
hyperplane of the space c of convergent sequences of real numbers, which can be seen
as the space C(K) where K = γN is the Alexandrov-compactification (or one-point
compactification) of N. Moreover, it is easy to show that whenever K is an infinite
(not necessarily metrizable) compact Hausdorff space, C(K) contains a subspace
isometric to c0 (see [4, Proposition 4.3.11]). We browse briefly and chronologically
through a few classical and historical embedding results into C(K)-spaces and c0.
Back in 1906, Fréchet observed [7] that every separable metric space admits an
isometric embedding into the space ℓ∞(N). An easy application of the Hahn-Banach
theorem gives a linear isometric embedding of every separable Banach space into
ℓ∞(N). These results can actually be cast as embedding results into a C(K)-space.
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Indeed ℓ∞(N) can be identified with the space C(βN) where βN denotes the Stone-
Čech compactification of N. Note that βN is an uncountable compact space and
since ℓ∞(N) is nonseparable, βN is not metrizable. The Banach-Mazur theorem [6]
asserts that every separable Banach space admits an (linear) isometric embedding
into the space C[0, 1]. Note that [0, 1] equipped with its canonical distance is
compact and hence C[0, 1] is separable. With the help of Fréchet’s embedding,
it is easily seen that every separable metric space can be isometrically embedded
into C[0, 1]. In 1974 Aharoni proved in [3] that the c+0 -distortion of every separable
metric space is less than 6. In that same paper he also proved that the c0-distortion
of ℓ1 is at least 2. A few years later Assouad [5] showed that the c+0 -distortion of
every separable metric space is at most 3. The fact that there is a bi-Lipschitz
embedding with distortion exactly 3 and that this value is optimal for embeddings
into c+0 is due to Pelant [11]. Finally the end of the story regarding embeddings into
c0 was completed by Kalton and Lancien [9] when they constructed an embedding
with distortion 2 (respectively, 1) for every separable, respectively proper metric
space. Recall that a metric space is proper if all its closed balls are compact.

1.2. Notation and Definitions. Let M and N be two metric spaces. Define the
distortion of a map f : M → N to be

dist(f) := ‖f‖Lip‖f
−1‖Lip =

(
sup

x 6=y∈M

dN (f(x), f(y))

dM (x, y)

)(
sup

x 6=y∈M

dM (x, y)

dN (f(x), f(y))

)
.

If the distortion of f is finite, f is said to be a bi-Lipschitz embedding. The conve-
nient notation M −֒→

Lip
N means that there exists a bi-Lipschitz embedding f from

M into N . We are concerned with the quantitative theory, and if dist(f) ≤ C, we
use the notation M −֒→

C−Lip
N . The parameter cN (M) = inf{C ≥ 1 : M −֒→

C−Lip
N}

will be referred to as the N -distortion of M .
Let F be a collection of metric spaces. We can define the N -distortion of the

class F as follows:

cN (F) = sup{cN (M) : M ∈ F} .

Finally, for two families F and G of metric spaces we define

cG(F) = sup
M∈F

inf
N∈G

cN (M) .

As an application of our work on the metric geometry of the Hamming cube we
will give nontrivial estimates on the parameter cN (F) for the following spaces and
classes:

• N = C(K) for some countable compact metric space K.
• F is one of the following classes:

(1) M := {M : M separable metric space}
(2) SB := {X : X separable Banach space}
(3) COT := {X : X separable Banach space with nontrivial cotype}
(4) T YP := {X : X separable Banach space with nontrivial type}
(5) SR := {X : X separable, reflexive Banach space}.

Observe that cN (SB) = cN (M). Indeed, it is clear that cN (SB) ≤ cN(M), and the
reverse inequality follows from the fact that every separable metric space embeds
isometrically into the separable Banach space C[0, 1].

1.3. Stratification of the Hamming cube. We define a stratification of a metric
spaceM to be a sequence M1 ⊂ M2 ⊂ . . . of subsets ofM such that M =

⋃∞
k=1 Mk.

(More generally, it is a way of expressing M as a direct limit of metric spaces, but
this generality will not be needed here.) The sets Mk are the segments of M , and
the sets Mk \ Mk−1 are the layers of M (where we put M0 = ∅). In this paper
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we are concerned with stratifications of the Hamming cube. The infinite Hamming
cube H∞ is the set of all infinite sequences in {0, 1} containing only finitely many
1s equipped with the Hamming metric dH , where dH(σ, τ) = |{i ∈ N : σi 6= τi}|. It
is isometric to the metric space ∆∞ consisting of the set [N]

<ω
of all finite subsets

of N equipped with the symmetric difference metric d∆, where d∆(A,B) = |A△B|.
The isometry between ∆∞ and H∞ is the natural one identifying a set with its
indicator function.

We describe two natural stratifications of the infinite Hamming cube. For k ∈ N

let Hk = {0, 1}k thought of as a subset of H∞ by extending elements of Hk to
infinite binary sequences with the addition of an infinite tail of 0s. The layers of the
stratification (Hk)

∞
k=0 are {∅} and families of sets of the form {A ⊂ N : maxA = n},

n ∈ N. The members of the second stratification are the families ∆k = [N]
≤k

of
subsets of N of size at most k. The set ∆k can be identified with the rooted
countably infinitely branching tree of height k. Note, however, that the metric d△
is not the classical graph metric of a tree.

The two stratifications share some essential metric properties despite being quite
different from the combinatorial and structural standpoint. For example, ∆k (re-
spectively,Hk) is a 2k-bounded (respectively, k-bounded), 1-separated metric space.
However, ∆k is a countable non-proper metric space while Hk is a finite metric
space. The two stratifications are different in the Lipschitz category in the follow-
ing sense. Two families of metric spaces F and G shall be called Lipschitz equivalent

if cF (G)cG(F) < ∞. The stratificationsO = (Hk)k≥0 and U = (∆k)k≥0 are not Lip-
schitz equivalent. Indeed, the embedding (σ1, · · · , σk) 7→

{
i ∈ {1, . . . , k} : σi = 1

}

sends Hk isometrically into ∆k (i.e., cU (O) = 1), however, cO(U) = ∞ since it is
impossible to embed a single ∆k bi-Lipschitzly into any Hi because of a cardinality
obstruction (assuming k ≥ 1 of course).

Sometimes metric information about a stratification can be used to derive metric
information on the stratified space and vice-versa. However, this need not be the
case. As we will see H∞ does not embed isometrically into c0 and this will be
witnessed by ∆2. This is in stark contrast with the fact that every Hk, as any finite
metric space, embeds isometrically into c0. So in some sense (∆k)k≥0 captures more
of the structure of ∆∞.

1.4. Organization of the paper. From now on we will consider countable com-
pact metric spaces and we will focus on the following nested family:

[0, ω] ⊂ [0, ω · 2] ⊂ · · · ⊂ [0, ω2] ⊂ · · · ⊂ [0, ωα · n] ⊂ · · · ⊂ [0, ωω] ,

where, as usual, ω is the first infinite ordinal. It is a simple fact that if compact
spaces K and L are homeomorphic then the Banach spaces C(K) and C(L) are
isometrically isomorphic. Note that the converse is also true by the Banach-Stone
theorem. Therefore the C(K)-spaces arising from the nested family above are
mutually non isometric Banach spaces. However, this family has the property that
C(K) embeds linearly isometrically into C(L) whenever K ⊂ L since then K is in
fact a clopen subset of L.

In Section 2 we estimate from above the C(K)-distortion of the infinite Hamming
cube and its stratification ∆k. We will show that when 1 ≤ r ≤ k < ∞, then
cC([0,ωr])(∆k) ≤ min

{
k
r
, 2
}
. In particular, ∆k embeds isometrically into C([0, ωk]).

In Section 3 we will give lower bounds. To estimate cC([0,ωr])(∆k) from below, we
exhibit a connection between a topological property of the compact space K and
the C(K)-distortion of the metric spaces ∆k. Roughly speaking, if the compact
metric space K is small in the sense of the Cantor-Bendixson derivation, then the
C(K)-distortion of ∆k cannot be too small. More precisely, we show that if the
Cantor-Bendixson index of K is k ≥ 2, then cC(K)(∆k) ≥

k
k−1 . In Section 4 we give
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some applications concerning the parameters cC(K)(M), cC(K)(SB), cC(K)(COT )
and cC(K)(SR). We conclude with a few open questions that arise naturally from
our work.

2. Low distortion embeddings of the Hamming cube

2.1. Embeddings of the sets ∆k. We will show, by constructing suitable bi-
Lipschitz embeddings, that when 1 ≤ r ≤ k < ∞, then cC([0,ωr])(∆k) ≤ min

{
k
r
, 2
}
.

In particular, ∆k embeds isometrically into C([0, ωk]), and hence also into C([0, ωr])
for r ≥ k.

We will need a description of C(K)-spaces as tree spaces, due to Bourgain [1]
(see also [2]), which we now proceed to describe. Recall that a tree is a set T with
a partial order 4 such that bt = {s ∈ T : s 4 t} is finite and linearly ordered
by 4 for all t ∈ T . The space c00(T ) consists of all functions x : T → R with
{t ∈ T : x(t) 6= 0} is finite. The unit vector basis (et)t∈T of c00(T ) consists of
functions et taking the value 1 at t and 0 everywhere else. For t ∈ T the functional
βt is defined by summing along the branch bt:

βt(x) =
∑

s∈bt

x(s) (x ∈ c00(T )) .

We define a norm ‖·‖ on c00(T ) by letting

‖x‖ = sup
t∈T

|βt(x)| (x ∈ c00(T )) .

The tree space corresponding to T is the completion S(T ) of (c00(T ), ‖·‖). It is easy
to verify that (et) is a normalized, monotone basis of S(T ). Note that the branch
functionals can be expressed in terms of the biorthogonal functional as follows:
βt =

∑
s∈bt

e∗s. We now let K be the w∗-closure in S(T )∗ of the set {βt : t ∈ T }.
This is a compact Hausdorff space and 0 ∈ K if and only if T has infinitely many
initial nodes (i.e., elements t ∈ T for which s 4 t implies s = t). The restriction
to K of the canonical embedding of S(T ) into S(T )∗∗ is an isometric isomorphism
S(T ) → C(K). By the Stone-Weierstrass theorem it is onto C(K) if 0 /∈ K and
onto C0(K) (functions vanishing at 0) if 0 ∈ K. It turns out that every C(K)-space
with separable dual can be represented as a tree space but we will not need this
result in its full generality. We will now mention the examples relevant to us.

For each k ∈ N let Tk be the tree
(
[N]≤k,4

)
, where s 4 t if and only if s is

an initial segment of t. Thus Tk is the rooted, countably infinitely branching tree
of height k. As usual, we identify a set t ⊂ N with the sequence i1, i2, . . . , where
i1 < i2 < . . . are the elements of t. So, for example, we shall write em for the basis
element e{m} of S(Tk), etc. The set {βt : t ∈ Tk} is homeomorphic to (0, ωk] (and

hence to [0, ωk]) via the map β∅ 7→ ωk and

(i1, . . . , ir) 7→
r−1∑

j=1

ωk−j(ij − ij−1 − 1) + ωk−r(ir − ir−1) ,

for 1 ≤ r ≤ k, i1 < · · · < ir (and with i0 = 0). Thus S(Tk) ∼= C([0, ωk]). Let us
now denote by T the disjoint union of the trees Tk. For s, t ∈ T we have s 4 t if
and only if for some k both s and t belong to Tk and s 4 t in Tk. The tree space
S(T ) is then isometrically isomorphic to C0([0, ω

ω)) which of course isometrically
embeds into C([0, ωω]). Note also that S(T ) ∼=

(⊕∞
k=1 S(Tk)

)
c0
. For the rest of

the paper we fix Tk and T to be trees just described.

Theorem 1. For every 1 ≤ r ≤ k there exist a map ϕk,r : ∆k → C([0, ωr]) such

that dist(ϕk,r) ≤
k
r
. It follows that cC([0,ωr])(∆k) ≤ min

{
k
r
, 2
}
.
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Proof. For each r ∈ N we define the map

fr : N → S(Tr) , m 7→ −
m−1∑

i=1

ei + em + 2

r∑

j=2

∑

i1<···<ij
ij=m

ei1,...,ij .

Then for 1 ≤ r ≤ k define

ϕk,r : ∆k → S(Tr) , σ 7→
∑

m∈σ

fr(m) .

Let σ, τ ∈ ∆k. We will show that

r

k
d△(σ, τ) ≤ ‖ϕk,r(σ) − ϕk,r(τ)‖ ≤ d△(σ, τ) .

Let i1 < · · · < is and j1 < · · · < jt be the elements of σ \ τ and τ \ σ, respectively.
We need to show that

r

k
(s+ t) ≤ ‖fr(i1) + · · ·+ fr(is)− fr(j1)− · · · − fr(jt)‖ ≤ (s+ t) .

The upper bound follows from the triangle inequality. Indeed, for each m ∈ N and
for each t ∈ Tr, summing fr(m) along the branch bt yields the values −1, 0, 1, and
hence fr(m) is of norm 1. To see the lower bound, first note that we can assume
without loss of generality that 1 ≤ s and that either t = 0 or i1 < j1. We will
then prove the following statement by induction on max{s, t}. Given s+ t distinct
positive integers i1 < · · · < is and j1 < · · · < jt, where 1 ≤ s ≤ k and either t = 0
or 1 ≤ t ≤ k and i1 < j1, setting

g = fr(i1) + · · ·+ fr(is)− fr(j1)− · · · − fr(jt) ,

there is a branch functional βℓ1,...,ℓu with 1 ≤ u ≤ r and i1 ≤ ℓ1 such that

|βℓ1,...,ℓu(g)| =
∣∣∣

u∑

v=1

e∗ℓ1,...,ℓv (g)
∣∣∣ ≥

r

max{r, s, t}
(s+ t) .

This clearly implies the lower bound of r
k
(s+ t) on the norm of g.

If s ≤ r or r ≤ s ≤ t, then for u = min{r, s} we have

βi1,...,iu(g) = e∗i1

(
fr(i1) +

s∑

m=2

fr(im)−
t∑

n=1

fr(jn)
)
+

u∑

v=2

e∗i1,...,iv
(
fr(iv)

)

= 1− (s− 1) + t+ 2(u− 1) = −s+ t+ 2u .

When s ≤ r, then −s+ t+ 2u = s+ t, and we are done. If r ≤ s ≤ t, then

−s+ t+ 2u ≥ 2r =
r

1
2 (s+ t)

(s+ t) ≥
r

max{r, s, t}
(s+ t) ,

as required. We finally deal with the case when r < s and t < s. Set

h = fr(i2) + · · ·+ fr(is)− fr(j1)− · · · − fr(jt) .

If t = 0 or i2 < j1, then we apply the induction hypothesis to h, and if j1 < i2,
then we apply the induction hypothesis to −h. In either case we obtain a branch
functional βℓ1,...,ℓu such that i1 < ℓ1 and |βℓ1,...,ℓu(h)| ≥ r

s−1 (s + t − 1). Since

i1 < ℓ1, we have βℓ1,...,ℓu

(
fr(i1)

)
= 0, and it follows that

|βℓ1,...,ℓu(g)| = |βℓ1,...,ℓu(h)| ≥
r

s− 1
(s+ t− 1) ≥

r

s
(s+ t) .

This completes the proof that dist(ϕk,r) ≤
k
r
. Recall that Kalton and Lancien [9]

proved that every separable metric space embeds into c0 with distortion at most 2.
It follows that cC([0,ωr])(∆k) ≤ min

{
k
r
, 2
}
. �
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2.2. C([0, ωω])-distortion of the Hamming cube. It follows from Theorem 1
that each ∆k embeds isometrically into C([0, ωω]). We now prove a stronger result.
Recall that a set A ⊂ N is a Schreier set if |A| ≤ minA (or if A = ∅). The
Schreier family, the set of all Schreier sets, is denoted by S1. We endow S1 with
the symmetric difference metric, i.e., we consider S1 as a subset of ∆∞.

Theorem 2. (S1, d△) embeds isometrically into C([0, ωω]).

Proof. Define

fω : N → S(T ) , m 7→
m∑

k=1

fk(m) ,

where fk, k ∈ N, are the functions defined in Theorem 1. Here we identify x ∈
S(Tk) with the sequence in S(T ) ∼=

(⊕∞
k=1 S(Tk)

)
c0

that has x in the kth co-

ordinate and zero everywhere else. Thus, more precisely, fω(m) is the sequence(
f1(m), . . . , fm(m), 0, 0, . . .

)
. We next define

ϕω : S1 → S(T ) , σ 7→
∑

m∈σ

fω(m) ,

and claim that this is an isometric embedding. As before, this amounts to showing
that if σ, τ ∈ S1 and i1 < · · · < is and j1 < · · · < jt are the elements of σ \ τ and
τ \ σ, respectively, then

‖fω(i1) + · · ·+ fω(is)− fω(j1)− · · · − fω(jt)‖ = s+ t .

Setting g = fω(i1) + · · ·+ fω(is)− fω(j1)− · · · − fω(jt), we have ‖g‖ ≤ s+ t by the
triangle inequality. Indeed, for each m ∈ N we have

‖fω(m)‖ = max
1≤k≤m

‖fk(m)‖ = 1 .

To get the lower bound, we may assume without loss of generality that i1 < j1 (or
t = 0) and consider the kth component of g in S(Tk) where k = i1. We will show
that

‖fk(i1) + · · ·+ fk(is)− fk(j1)− · · · − fk(jt)‖ = s+ t .

Note that s ≤ |σ| ≤ minσ ≤ i1 = k. It follows that we can get the lower bound s+t
by applying the branch functional βi1,...,is in Tk as in the proof of Theorem 1. �

We now turn our attention to the infinite Hamming cube. With the help of
Theorem 2 we are now able to embed the infinite Hamming cube into C([0, ωω])
with arbitrarily small distortion. We say that M embeds almost isometrically into
N , denoted by M −֒→

a.i.
N , if for every ε > 0 there exist a bi-Lipschitz embedding f

from M into N with dist(f) ≤ 1 + ε.

Theorem 3. The infinite Hamming cube ∆∞ embeds almost isometrically into

C([0, ωω]).

Proof. As before, we will in fact embed into C0([0, ω
ω)) which is identified with

S(T ) ∼=
(⊕∞

k=1 S(Tk)
)
c0
. Fix ε > 0. Choose a sequence 0 = N0 < N1 < N2 < . . .

of integers satisfying

(1) 2m ≤ εNm for all m ≥ 0 .

We next define maps f, ϕ similar to fω,∆ω but with a different admissibility condi-
tion. It will be clear from the definition and the proof of Theorem 2 that this new
map ϕ will be an isometric embedding when restricted to the class of sets σ with
|σ| ≤ Nminσ. We define

f : N → S(T ) , m 7→
Nm∑

k=1

fk(m) ,
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and

ϕ : ∆∞ → S(T ) , σ 7→
∑

m∈σ

f(m) ,

Fix σ, τ ∈ ∆∞. We will show that

(2) (1− ε)d△(σ, τ) ≤ ‖ϕ(σ)− ϕ(τ)‖ ≤ d△(σ, τ) .

By the triangle inequality, we have

‖ϕ(σ) − ϕ(τ)‖ =
∥∥∥
∑

m∈σ

f(m)−
∑

m∈τ

f(m)
∥∥∥ ≤

∑

m∈σ△τ

‖f(m)‖ = d△(σ, τ) .

To show the lower bound, we first observe that σ and τ can be assumed to be
disjoint. Indeed, we have

ϕ(σ)− ϕ(τ) = ϕ(σ \ τ) − ϕ(τ \ σ) and d△(σ, τ) = d△(σ \ τ, τ \ σ) ,

and so we can replace σ and τ with σ \ τ and τ \ σ if necessary.
We next choose m,n ∈ N such that

(3) Nm−1 < |σ| ≤ Nm and Nn−1 < |τ | ≤ Nn .

Set σ′ = σ\{1, . . . ,m−1} and τ ′ = τ \{1, . . . , n−1}. Since σ′ and τ ′ are admissible,
we have

(4) ‖ϕ(σ′)− ϕ(τ ′)‖ = d△(σ′, τ ′) .

Next, since σ′ and τ ′ are small perturbations of σ and τ , respectively, we have

(5)
∣∣‖ϕ(σ)− ϕ(τ)‖ − ‖ϕ(σ′)− ϕ(τ ′)‖

∣∣ ≤ ‖ϕ(σ)− ϕ(σ′)‖ + ‖ϕ(τ)− ϕ(τ ′)‖

≤ d△(σ, σ′) + d△(τ, τ ′) ≤ (m− 1) + (n− 1)

and

(6)
∣∣d△(σ, τ) − d△(σ′, τ ′)

∣∣ ≤ d△(σ, σ′) + d△(τ, τ ′) ≤ (m− 1) + (n− 1) .

It follows that

‖ϕ(σ)− ϕ(τ)‖ ≥ ‖ϕ(σ′)− ϕ(τ ′)‖ − (m+ n− 2) (by (5))

= d△(σ′, τ ′)− (m+ n− 2) (by (4))

≥ d△(σ, τ) − 2(m+ n− 2) (by (6))

= |σ|+ |τ | − 2(m+ n− 2)

= |σ|
(
1− 2(m−1)

|σ|

)
+ |τ |

(
1− 2(n−1)

|τ |

)

≥ (1− ε)(|σ|+ |τ |) = (1− ε) d△(σ, τ) (by (1) and (3))

as required. �

Remark. An interesting question presents itself in light of the two theorems above.
Does ∆∞ almost isometrically embed into S1? A positive answer with Theorem 2
would provide another proof of Theorem 3.
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3. Estimating the C(K)-distortion from below

3.1. Aharoni’s lower bound observed with “metric lenses”. Aharoni proved
that cc0(SB) ≥ 2, and hence cc0(M) ≥ 2. Indeed, he showed that the separable
Banach space ℓ1 does not embed into c0 with distortion strictly less than 2. A
careful inspection of his proof shows that the proof and the statement of the result
can be carried out and stated without using or even mentioning the linear structure
of the Banach space ℓ1. This simple but crucial observation allows us to extend
Aharoni’s proof to the much more general setting of embeddings into C(K)-spaces.

Denote by ∆̃2 the subset
{
∅, {n}, {1, i}, {2, j} : n ≥ 1, i ≥ 2, j ≥ 3

}
of the metric

space ∆2. The following theorem is nothing else but Aharoni’s lower bound theorem
reformulated in purely metric terms. For the sake of completeness we include the
original proof using our notation in the hope that it will make the notation used in
the proof of Theorem 6 more accessible.

Theorem 4 (Aharoni). The metric space ∆̃2 does not embed into c0 with distortion

strictly less than 2.

Proof. Assume that f : ∆̃2 → c0 and C < 2 satisfy

d△(σ, τ) ≤ ‖f(σ)− f(τ)‖ ≤ Cd△(σ, τ) for all σ, τ ∈ ∆̃2 .

Without loss of generality one can assume that f(∅) = 0. Let fn = e∗n ◦ f so that

f(σ) =
(
fn(σ)

)∞
n=1

for σ ∈ ∆̃2. For every i 6= j in N define

Xi,j = {n ∈ N : ‖fn({i})− fn({j})‖ ≥ 4− 2C} .

Note that these are finite sets. Moreover, for every i, j ≥ 3, i 6= j, X1,2 ∩ Xi,j 6= ∅.
Indeed, we have

‖f({1, i})− f({2, j})‖ ≥ d△({1, i}, {2, j}) = 4 .

Hence there exists ni,j ∈ N such that

‖fni,j
({1, i})− fni,j

({2, j})‖ ≥ 4 .

It follows that

|fni,j
({i})− fni,j

({j})| ≥ |fni,j
({1, i})− fni,j

({2, j})|

− |fni,j
({1, i})− fni,j

({i})| − |fni,j
({2, j})− fni,j

({j})|

≥ 4− ‖f({1, i})− f({i})‖ − ‖f({2, j})− f({j})‖

≥ 4− Cd△({1, i}, {i})− Cd△({2, j}, {j}) = 4− 2C .

This proves that ni,j ∈ Xi,j . Arguing along the same lines, one gets that ni,j ∈ X1,2

as well. Therefore X1,2 ∩ Xi,j 6= ∅ whenever i 6= j, i, j ≥ 3. Denote by P the
canonical projection from c0 onto the closed linear span Y of the vectors (en)n∈X1,2

.

We now obtain a contradiction by observing that the sequence (Pf({n}))∞n=3 is a
C-bounded and (4−2C)-separated sequence in the finite-dimensional Banach space
Y . Indeed, for every n ≥ 3,

‖Pf({n})‖ ≤ ‖f({n})‖ = ‖f({n})− f(∅)‖ ≤ Cd△({n}, ∅) = C ,

and for every i 6= j, i, j ≥ 3, we have

‖Pf({i})− Pf({j})‖ = sup
n∈X1,2

|fn({i})− fn({j})|

≥ |fni,j
({i})− fni,j

({j})|

≥ 4− 2C > 0 .

�
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3.2. Estimating the C(K)-distortion of ∆k from below. A key ingredient in
estimating from below the C(K)-distortion of the metric space ∆k is the Cantor-
Bendixson derivation for compact spaces. We next recall the definition and a few
basic properties of this derivation.

Let K be a compact topological space. The Cantor-Bendixson derivative K ′ of
K is the set of all accumulation points of K, i.e.,

K ′ = K \ {x ∈ K : x is an isolated point} .

By transfinite induction one can define derivativesK(α) of higher order α as follows.

We set K(0) = K. For an ordinal α we let K(α+1) =
(
K(α)

)′
and, finally, for a

non-zero limit ordinal λ we define K(λ) =
⋂

α<λ K
(α).

We gather in the next proposition some basic properties of the Cantor-Bendixson
derivation.

Proposition 5. Let K be a compact metric space. Then

(1) K is finite ⇐⇒ K ′ = ∅ ⇐⇒ K is discrete;

(2) K is countable ⇐⇒ ∃ α < ω1 such that K(α) = ∅;
(3) K is uncountable ⇐⇒ ∃ α < ω1 such that K(α+1) = K(α) 6= ∅.

For a general compact topological space K the smallest ordinal α such that
K(α) = K(α+1) is called the Cantor-Bendixson index (or rank) of K, and we
denote it by iCB(K). For example, consider the compact space K = [0, ωα · n],
where 1 ≤ α < ω1 and 1 ≤ n < ω. Then iCB(K) = α + 1 and |K(α)| = n.
More generally, if K is a countably infinite compact metric space, then for some
1 ≤ α < ω1 and 1 ≤ n < ω we have iCB(K) = α + 1, |K(α)| = n and K is
homeomorphic to [0, ωα · n]. Thus, the Cantor-Bendixson derivation gives rise
to a topological classification of countable compact metric spaces, and hence an
isometric classification of C(K)-spaces with separable dual.

Inspired by the reformulation of Aharoni’s proof in terms of a metric subset of
∆2 we establish a link between the C(K)-distortion of the sequence (∆k)k≥1 and
the Cantor-Bendixson index of the compact space K. In Section 2 we showed that
cC([0,ωk−1])(∆k) ≤

k
k−1 for k ≥ 2. In the remainder of this section we will show that

the upper bound is tight.

Theorem 6. Let K be a compact topological space and k be an integer with k ≥ 2.
If ∆k admits a bi-Lipschitz embedding into C(K) with distortion strictly less than
k

k−1 , then iCB(K) ≥ k + 1. It follows that cC([0,ωk−1])(∆k) =
k

k−1 .

Proof. Assume that there is a function f : ∆k → C(K) and a constant D < k
k−1

such that

d△(σ, τ) ≤ ‖f(σ)− f(τ)‖ ≤ Dd△(σ, τ) for all σ, τ ∈ ∆k.

Set η = 2k − 2(k − 1)D and observe that η > 0. For distinct i, j ∈ N define

Xi,j =
{
β ∈ K : |f({i})(β)− f({j})(β)| ≥ η

}
.

Consider the following statment. For each 0 ≤ s ≤ k and for any 2(k − s) distinct
integers i1, i2, . . . , ik−s, j1, j2, . . . , jk−s, we have

K(s) ∩ Xi1,j1 ∩ Xi2,j2 ∩ · · · ∩ Xik−s,jk−s
6= ∅ .

We will now verify this statement by induction on s. The theorem will then follow
by putting s = k.

We begin with s = 0. Let i1, . . . , ik and j1, . . . , jk be 2k distinct elements of N.
Set σ = {i1, . . . , ik} and τ = {j1, . . . , jk}. Since ‖f(σ) − f(τ)‖ ≥ d△(σ, τ) = 2k,
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there exists β ∈ K such that |f(σ)(β) − f(τ)(β)| ≥ 2k. It follows that
∣∣f({ir})(β)− f({jr})(β)

∣∣ ≥
∣∣f(σ)(β) − f(τ)(β)

∣∣ −
∣∣f(σ)(β) − f({ir})(β)

∣∣

−
∣∣f({jr})(β)− f(τ)(β)

∣∣

≥ 2k − ‖f(σ)− f({ir})‖ − ‖f({jr})− f(τ)‖

≥ 2k −Dd△(σ, {ir})−Dd△({jr}, τ)

≥ 2k − 2D(k − 1) = η > 0

for each 1 ≤ r ≤ k. Thus, β ∈ Xi1,j1 ∩ · · · ∩ Xik,jk .
Now assume that the statement holds for some 0 ≤ s < k. Let i1, . . . , ik−s−1

and j1, . . . , jk−s−1 be 2(k − s− 1) distinct elements of N. Let

L = K(s) ∩ Xi1,j1 ∩ · · · ∩ Xik−s−1,jk−s−1

and n0 = max{i1, . . . , ik−s−1, j1, . . . , jk−s−1}. Note that L is a closed subset of K.
Let us denote by R the restriction operator C(K) → C(L). Note that for distinct
i, j > n0 we have L ∩ Xi,j 6= ∅ by the induction hypothesis. It follows that the
functions Rf({i}), i > n0, are uniformly bounded and η-separated. Indeed, we
have

‖Rf({i})‖ ≤ ‖f({i})‖ ≤ ‖f({i})− f(∅)‖+ ‖f(∅)‖ ≤ Dd△({i}, ∅) + ‖f(∅)‖

≤ D + ‖f(∅)‖ ,

and for distinct i, j > n0 we can pick β ∈ L ∩ Xi,j and obtain
∥∥Rf({i})−Rf({j})

∥∥ ≥
∣∣f({i})(β)− f({j})(β)

∣∣ ≥ η .

We deduce that C(L) must be infinite-dimensional, and hence L must be infinite.
Since every infinite compact space has an accumulation point, we have

K(s+1) ∩ Xi1,j1 ∩ Xi2,j2 ∩ · · · ∩ Xik−s−1,jk−s−1
6= ∅ ,

as required. �

4. Applications and open problems

Let (M,dM ) denote an arbitrary separable metric space. Let Dα be an upper
bound on cC([0,ωα])(M), and consider the following self-explanatory diagram.

c0 −֒→
=

C([0, ω]) −֒→
=

· · · −֒→
=

C([0, ωk]) −֒→
=

· · · −֒→
=

C([0, ωω]) −֒→
=

C([0, 1])

−֒
−
−
−
→

2
−

L
ip

−֒
−
−
−
→

D
1
−

L
ip

−֒
−
−
−
→

D
k
−

L
ip

−֒
−
−
−
→

D
ω

−
L
ip

−֒
−
−
−
→

1
−

L
ip

(M,dM ) (M,dM ) · · · (M,dM ) · · · (M, dM ) (M,dM )

Whereas the best distortion achievable in the two extreme cases is completely un-
derstood, essentially no estimates for the values of the parameters cC([0,ωα])(C) have
been hitherto known for C being any class among M,SB, COT , T YP ,SR (besides
the upper bound 2 which follows from Kalton-Lancien embedding result [9]). It is
worth noting that since any C(K)-space (for K countable) is c0-saturated, it cannot
be a linearly isometrically universal space for the class of separable Banach spaces.
Moreover, it cannot be an isometrically universal space either since Godefroy and
Kalton [8] proved that if a separable Banach space X embeds isometrically into
a Banach space Y , then Y contains an linear isometric copy of X . Our study of
stratifications of the Hamming cube (Theorem 6) yields nontrivial lower bounds for
the first time.

Corollary 7. Let C ∈ {M,SB, COT , T YP ,SR}, and let k ∈ N. Then k+1
k

≤
cC([0,ωk])(C) ≤ 2.
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Proof. We first remark that the upper bound for all k is the result of Kalton and
Lancien [9], and the lower bound for k = 1 is due to Aharoni [3]. We now consider
the lower bound for k ≥ 2.

Set K = [0, ωk], and note that iCB(K) = k + 1. It follows from Theorem 6 that
cC(K)(∆k+1) ≥

k+1
k

. Given ε > 0, choose p with 1 < p < ∞ such that the function
f : ∆k+1 → ℓp defined by f(σ) =

∑
i∈σ ei is a (1 + ε)-isometric embedding. It

follows that cC(K)(∆k) ≤ (1+ ε)cC(K)(ℓp). Since ℓp belongs to the class C, we have
cC(K)(∆k) ≤ (1 + ε)cC(K)(C), and the result is proved. �

The following corollary is an easy consequence of Theorem 6 and the fact that
(∆k)k≥1 is a stratification of H∞.

Corollary 8. Let K be a countable compact metric space. If H∞ −֒→
a.i.

C(K), then

iCB(K) ≥ ω + 1. In particular, if C(K) is an almost isometrically universal space

for the class C ∈ {M,SB, COT , T YP ,SR}, then iCB(K) ≥ ω + 1.

Proof. It follows from Theorem 6 that iCB(K) ≥ k + 1 for every k < ω, and hence
K(ω) =

⋂
k<ω K(k) 6= ∅. The result follows by Proposition 5. �

Remark. Prochazka and Sánchez-González [10] using the technique of Section 3
exhibited a countable nonproper metric space which does not admit an embedding
with distortion less than 2 into any C(K)-space with K countable. Therefore for
such compact spaces K we have cC(K)(M) = cC(K)(SB) = 2, and hence C(K)
cannot be an almost isometrically universal space for the classes M or SB.

The following theorem, of independent interest, can also be used to prove the
second part of Corollary 8 in combination with either Aharoni’s original lower bound
involving ℓ1 or Corollary 7.

Theorem 9. If ℓ1 −֒→
a.i.

C(K) then ℓ1 −֒→
a.i.

C(K(α)) for all ordinals α < ω.

Proof. It is sufficient to show that if ℓ1 −֒→
a.i.

C(K), then ℓ1 −֒→
a.i.

C(K ′). Fix ε > 0

and let f : C(K) → ℓ1 be a function satisfying

‖x− y‖1
1 + ε

≤ ‖f(x)− f(y)‖∞ ≤ ‖x− y‖1 .

Define g : ℓ1 → C(K ′) by letting g(x) be the restriction of f(x) to K ′ (x ∈ ℓ1). We
are going to show that dist(g) ≤ 1+ε

1−2ε , which then completes the proof.

Fix distinct vectors x, y ∈ ℓ1 of finite support. Let δ = ‖x − y‖1 and n0 =
max supp(x) ∪ supp(y). For distinct integers i, j > n0 we have

‖f(x+ δei)− f(y + δej)‖∞ ≥
3δ

1 + ε
.

Hence there exists β ∈ K such that

(7) |f(x+ δei)(β) − f(y + δej)(β)| ≥
3δ

1 + ε
.

We next observe that if (7) holds, then we also have

(8) |f(x+ δei)(β) − f(x+ δej)(β)| ≥
(2− ε)δ

1 + ε
,

and

(9) |f(x)(β) − f(y)(β)| ≥
(1− 2ε)δ

1 + ε
=

(1− 2ε)‖x− y‖1
1 + ε

.

Now let

L =
{
β ∈ K : ∃ distinct i, j > no satisfying equation (7)

}
.
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For z ∈ ℓ1 let fL(z) denote the restriction of f(z) to L. By (8), the sequence(
fL(x + δei)

)
i>n0

in C(L) is bounded and (2−ε)δ
1+ε

-separated. It follows that L is

infinite, and so L∩K ′ 6= ∅. By (9), for any β ∈ L∩K ′ we have |f(x)(β)−f(y)(β)| ≥
(1−2ε)‖x−y‖1

1+ε
. Thus

‖g(x)− g(y)‖ ≥
(1− 2ε)‖x− y‖1

1 + ε
.

This shows that g : ℓ1 → C(K ′) is a bi-Lipschitz embedding with constant 1+ε
1−2ε , as

claimed. �

We conclude by stating some open problems. In light of the above result, it is
natural to ask the following.

Question 1. Does ℓ1 almost isometrically embed into C([0, ωω])?

Recall that one cannot hope for an isometric embedding because of the aformen-
tioned result of Godefroy and Kalton [8].

Recall also that using the techniques of Theorem 6, Prochazka and Sánchez-
González [10] constructed a separable metric space M for which cC(K)(M) = 2 for
any (infinite) countable compact space K. However, it is not clear whether their
example embeds into ℓ1 isometrically (or with distortion less than 2). Indeed, it is
not known if their example isometrically embeds into any Banach space which is
not already universal for SB. So the following open problems seem to be of interest.

Question 2. Is there some non-trivial class C of Banach spaces and a countable

compact space K such that C(K) is almost isometrically universal for the class C?

The above question is deliberately vague. Examples we have in mind for non-
trivial classes include T YP , COT and SR. We conclude with a more specific quan-
titative question.

Question 3. Let α ∈ [2, ω1). What is the exact value of cC([0,ωα])(C) for C ∈
{T YP , COT ,SR}?
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