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Abstract. Frames for Rn can be thought of as redundant or linearly dependent coordinate

systems, and have important applications in such areas as signal processing, data compres-

sion, and sampling theory. The word “frame” has a different meaning in the context of

differential geometry and topology. A moving frame for the tangent bundle of a smooth

manifold is a basis for the tangent space at each point which varies smoothly over the mani-

fold. It is well known that the only spheres with a moving basis for their tangent bundle are

S1, S3, and S7. On the other hand, after combining the two separate meanings of the word

“frame”, we show that the n-dimensional sphere, Sn, has a moving finite unit tight frame

for its tangent bundle if and only if n is odd. We give a procedure for creating vector fields

on S2n−1 for all n ∈ N, and we characterize exactly when sets of such vector fields form a

moving finite unit tight frame on S2n−1. This gives as well a new method for constructing

finite unit tight frames for Hilbert spaces.

1. Introduction

Bases and frames for Hilbert spaces give a method to linearly represent vectors as a

sequence of coefficients. However, frames can be redundant in that different sequence of

coefficients can be used to reconstruct a single vector, which can be useful in applications. For

example, if a signal is transmitted as a sequence of basis coefficients and some coefficients are
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lost or corrupted, then an entire dimension is lost and cannot be recovered. The redundancy

of a frame helps to mitigate this error by effectively spreading the loss over the whole space

instead of localizing it to certain dimensions. Given n ∈ N, a tight frame for Rn is a sequence

(fi)
k
i=1 ⊂ Rn with k ≥ n such that there exists a constant C > 0, called the frame bound,

satisfying

(1) x =
1

C

k∑
i=1

〈fi, x〉fi for all x ∈ Rn,

where, 〈·, ·〉 is the standard inner product on Rn. Thus, a tight frame allows for the exact

linear reconstruction of a vector from the sequence of frame coefficients (〈fi, x〉)ki=1. We call

a tight frame (fi)
k
i=1 a finite unit tight frame, or FUNTF, if ‖fi‖ = 1 for all 1 ≤ i ≤ k. Note

that in the case k = n, a sequence (fi)
n
i=1 ⊂ Rn is a FUNTF if and only if it is an ortho-

normal basis. FUNTFs are the most useful frames for signal processing, as they minimize

mean squared error due to noise [GKK]. This has motivated the study of FUNTFs and in

particular has led to interest in finding ways to construct FUNTFs [CL]. In [BF], using a

potential energy concept inspired from physics, it is proven that there exists a finite unit

tight frame of k vectors for Rn for all natural numbers k ≥ n. An algorithm for constructing

FUNTFs is given in [DFKLOW], and in [CFHWZ] the method of spectral tetris is introduced

to explicitly construct FUNTFs as well other types of frames.

In the context of differential geometry and topology, the word “frame” has a different

meaning. A moving frame for the tangent bundle of a smooth manifold can be thought of

as a basis for the tangent space at each point on the manifold which moves continuously

over the manifold. To avoid confusion, we will refer to moving frames in this context as

moving bases. If n ∈ N and Mn is an n-dimensional smooth manifold, then a vector field

is a continuous function f : Mn → TMn such that f(p) ∈ TpMn for all p ∈ M . That is, a

vector field continuously assigns to each point p ∈ Mn a vector f(p) in the tangent space
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TpM . Thus, a moving basis for the tangent bundle of a n-dimensional smooth manifold Mn

is a sequence of vector fields (fi)
n
i=1 such that (fi(p))

n
i=1 is a basis for TpM for all p ∈Mn.

Of particular historical interest in the theory of vector fields and moving bases is the case

where the underlying manifold Mn is the n-dimensional sphere Sn. Note that S1 can be

represented by the unit circle in R2 and that S2 can be represented by the unit sphere in R3.

The famous Hairy Ball Theorem states that if n is even then there does not exist a nowhere

zero vector field for Sn. As a moving basis for Sn would consist of n nowhere zero vector

fields, the manifold Sn trivially cannot have a moving basis when n is even. On the other

hand, it can be simply proven that S1, S3, and S7 all have a moving basis for their tangent

space. To give a brief sketch of this proof, we identify S1 with the unit circle of the complex

numbers C, S3 with the unit sphere of the quaternions H, and S7 with the unit sphere of the

octonions O. Each of these division algebras contain the real numbers, so in particular we

have that 1 ∈ S1 ⊂ C, 1 ∈ S3 ⊂ H, and 1 ∈ S7 ∈ O. Now for each of the cases n = 1, 3, 7,

we can pick a basis (vi)
n
i=1 for the tangent space T1S

n. To move this basis (vi)
n
i=1 ⊂ T1S

n

from 1 ∈ Sn to a different point p ∈ Sn, we simply multiply each vector in the basis by

p giving (pvi)
n
i=1 ⊂ TaS

n. This gives a moving basis for Sn for the cases n = 1, 3, 7. This

proof will not work for other values of n ∈ N as C, H, and O are the only finite dimensional

division algebras over R besides R itself. The question of does Sn have a moving basis for

its tangent bundle for any other values of n was an important open problem in differential

topology and was solved negatively in 1958 by Michel Kervaire and independently by Raoul

Bott and John Milnor.

This motivates us to question what happens when we weaken the condition of basis to

that of finite unit tight frame. By combining the two definitions of the word “frame”, we

are led to studying tight frames which vary smoothly over a manifold. As the reconstruction

formula (1) uses an inner product, we need to consider Riemannian manifolds, where the

Riemannian metric gives a smoothly varying inner product for the tangent space at each
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point on the manifold. Note that any smooth submanifold of Rn is naturally a Riemannian

manifold where the Riemannian metric is given by the standard inner product on Rn.

Definition 1.1. Let Mn be an n-dimensional Riemannian manifold with Riemannian metric

〈·, ·〉a for each a ∈ Mn. Let k ≥ n, and fi : M → TMn be a vector field for all 1 ≤ i ≤ k.

We say that (fi)
k
i=1 is a moving tight frame for the tangent bundle of Mn if (fi(a))ki=1 is a

tight frame for TaM
n for all a ∈Mn. That is, for all a ∈Mn, there exists C > 0 such that

x =
1

C

k∑
i=1

〈x, fi(a)〉afi(a) for all x ∈ π−1(a).

We say that (fi)
k
i=1 is a moving finite unit tight frame (FUNTF) for the tangent bundle of

Mn if it is a moving tight frame and ‖fi(a)‖ =
√
〈fi(a), fi(a)〉 = 1 for all 1 ≤ i ≤ k and

a ∈Mn.

It is proven in [FPWW] that a sequence of vector fields (fi)
k
i=1 over a Riemannian manifold

Mn is a moving tight frame for TMn if and only if Mn is a smooth submanifold of a k-

dimensional Riemannian manifold Nk such that Nk has a moving orthonormal basis (ei)
k
i=1

and Pxei(x) = fi(x) for all x ∈ Mn, where Px : TxN
k → TxM

n is orthogonal projection.

In particular, for all n ∈ N, we may construct a moving tight frame for Sn by considering

Sn ⊆ Rn+1 and projecting the standard unit vector basis for Rn+1 onto TxS
n for all x ∈ Sn.

However, the vector fields obtained from this projection will not be nowhere zero, and the

resulting frame will not be a FUNTF. Thus, moving tight frames are simple to create on Sn,

but we will need a different approach to creating moving FUNTFs.

If n ∈ N is even, then the sphere Sn does not have a nowhere zero vector field, and hence

no even dimensional sphere can have a moving FUNTF for its tangent bundle. On the other

hand, we will show that every odd dimensional sphere has a moving FUNTF for its tangent

bundle. To do this, we give a procedure for creating vector fields on S2n−1 for all n ∈ N,

and we characterize exactly when sets of such vector fields form a moving finite unit tight
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frame on S2n−1. This gives as well a new method for constructing finite unit tight frames for

Hilbert spaces, although the number of frame vectors created by this method can be very

large relative to the dimension of the Hilbert space.

The concept of a moving tight frame was first applied in 2009 when P. Kuchment proved

that particular vector bundles over the torus, which arise in mathematical physics, have

natural moving tight frames but do not have moving bases [K]. In [FPWW], it was shown

that the dilation theorem for tight frames in Rn can be extended to moving tight frames.

The relationship between frames for Hilbert spaces and manifolds was also considered in a

different context by Dykema and Strawn, who studied the manifold structure of collections

of FUNTFs under certain equivalent classes [DySt].

For terminology and background on vector bundles and smooth manifolds see [L]. For

terminology and background on frames for Hilbert spaces see [C] and [HKLW].

Most of the research contained in this paper was conducted at the Matrix Analysis and

Wavelets Research Experience for Undergraduates organized by Dr David Larson. The first

author was a research mentor for the program, and the second and third authors were

participants. We sincerely thank Dr Larson for his advice and encouragement.

2. Tight frames

Before discussing moving tight frames, we give some basic results about how to check

whether or not a sequence of vectors is a tight frame for a Hilbert space. For n ∈ N, we

denote the unit vector basis for Rn by (ei)
n
i=1. As the reconstruction formula (1) is linear, it

holds for all x ∈ Rn if and only if it holds for each vector in the orthonormal basis (ei)
n
i=1.

Furthermore, if 1 ≤ p ≤ n and x ∈ Rn, then x = ep if and only if 〈x, eq〉 = δp,q for all

1 ≤ q ≤ n. This leads us to the following fact.
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Fact 2.1. Let (fi)
k
i=1 ⊂ Rn. The sequence (fi)

k
i=1 is a tight frame for Rn with frame bound

C > 0 if and only if

1

C

k∑
i=1

〈fi, ep〉〈fi, eq〉 = δp,q for all 1 ≤ p, q ≤ n.

Given n ∈ N and a ∈ S2n−1 ⊂ R2n, we will be interested in identifying when a sequence

{fi(a)}ki=1 is a tight frame for the subspace TaS
2n−1 ⊂ R2n. However, Fact 2.1 may only

be used to check if a sequence of vectors is a tight frame for the entire space, not just a

subspace. We will use the following fact to get around this problem.

Fact 2.2. Let n ∈ N and X, Y ⊂ Rn such that X = Y ⊥. If (xi)
k
i=1 ⊂ X is a tight frame for

X with frame constant C > 0 and (yi)
`
i=1 ⊂ Y , then (yi)

`
i=1 is a tight frame for Y with frame

constant C if and only if (x1, ..., xk, y1, ..., y`) is a tight frame for Rn with frame constant C.

To apply Fact 2.2, we need to know the frame constant for a given finite unit tight frame.

This is given by the following fact, which can be deduced from Fact 2.1 by summing over

1 ≤ p = q ≤ n.

Fact 2.3. Let n, k ∈ N such that k ≥ n. If (fi)
k
i=1 ⊂ Rn is a finite unit tight frame for Rn

then k
n

is the frame constant for (fi)
k
i=1.

3. A moving FUNTF for S2n−1

We identify the sphere Sn with the set of unit vectors inRn+1. That is, Sn = {(a1, ..., an+1) ∈

Rn+1 :
∑n+1

i=1 a
2
i = 1}. With this representation, it is very easy to identify the tangent space

TaS
n for each a ∈ Sn. We first note that if a ∈ Sn, then the vector a is normal to the

tangent space TaS
n. Thus, as Sn is a manifold of 1 less dimension than Rn+1, if a ∈ Sn,

then a vector b ∈ Rn+1 is in the tangent space TaS
n if and only if b is orthogonal to a.

That is, if a = (a1, ..., an+1) ∈ Sn and b = (b1, ..., bn+1) ∈ Rn+1 then b ∈ TaSn if and only
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if 〈a, b〉 =
∑n+1

i=1 aibi = 0. For example, in the case of the circle, if (a1, a2) ∈ S1 ⊂ R2 then

(−a2, a1) is the unit vector in the tangent line T(a1,a2)S
1 which points counter-clockwise.

Thus, we can create a unit vector field for S1 ⊂ R2 by switching the two coordinates and

including a negative sign in the first coordinate. This method can be used to create vector

fields for higher dimensional spheres as well. Given any n ∈ N, we create a unit vector

field for S2n−1 ⊂ R2n by switching pairs of coordinates and inserting a negative sign into

one coordinate of each pair. For example, the map (a1, a2, a3, a4) 7→ (a2,−a1, a4,−a3) is a

unit vector field on S3. To formalize this, if (εi)
2n
i=1 ∈ {−1, 1}2n and (ki)

2n
i=1 ∈ {1, 2, ..., 2n}2n

then we define U(εi,ki)2ni=1
: R2n → R2n to be the operator defined by U(εi,ki)2ni=1

(a1, ..., a2n) =

(εk1ak1 , ..., εk2nak2n). As we are only interested in U(εi,ki)2ni=1
when it switches pairs of coordi-

nates and multiplies one of the coordinates in each pair by −1, we restrict ourselves to the

set,

A2n :=
{
U(εi,ki)2ni=1

: R2n → R2n
∣∣ εi = −εki , i = kki for all 1 ≤ i ≤ 2n

}
.

Note that the condition that εi = −εki guarantees in particular that i 6= ki for all 1 ≤ i ≤ 2n.

Thus, the set A2n is exactly the collection of operators which switches pairs of coordinates

and multiplies one of the coordinates in each pair by −1. The next lemma shows that the

operators in A2n can be used to construct unit vector fields.

Lemma 3.1. Let n ∈ N, U(εi,ki)2ni=1
∈ A2n, and a = (a1, ..., a2n) ∈ S2n−1 ⊂ R2n. Then,

U(εi,ki)2ni=1
(a) ∈ TaS2n−1 and ‖U(εi,ki)2ni=1

(a)‖ = 1.

Proof. Recall that U(εi,ki)2ni=1
(a) ∈ TaS2n−1 if and only if 〈U(εi,ki)2ni=1

(a), a〉 = 0. We have that,

2〈U(εi,ki)2ni=1
(a), a〉 = 2

2n∑
i=1

εkiakiai =
2n∑
i=1

εkiakiai + εkkiakkiaki =
2n∑
i=1

εkiakiai + εiaiaki = 0.

Thus, 〈U(εi,ki)2ni=1
(a), a〉 = 0 and hence U(εi,ki)2ni=1

(a) ∈ TaS
2n−1. The vector U(εi,ki)2ni=1

(a) is

formed by permuting the coordinates of a and multiplying half the coordinates by −1. None

of these operations changes the norm, and thus ‖U(εi,ki)2ni=1
(a)‖ = 1 as ‖a‖ = 1. �
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By Lemma 3.1, if U ∈ A2n, then we may define a unit vector field fU : S2n−1 → TS2n−1

by fU(a) := U(a) for all a ∈ S2n−1. In the introduction we used division algebras over R to

prove that S1, S3, and S7 each have a moving basis for their tangent bundle. However, for

n ∈ {1, 3, 7} it is also possible to choose A ⊂ A2n such that {fU}U∈A is a moving orthonormal

basis for Sn. Indeed, if (a1, a2) ∈ S1 then {(−a2, a1)} is an orthonormal basis for T(a1,a2)S
1,

and if (a1, a2, a3, a4) ∈ S3 then {(−a2, a1, a4,−a3), (−a3,−a4, a1, a2), (−a4, a3,−a2, a1)} is an

orthonormal basis for T(a1,a2,a3,a4)S
3. Constructing a moving orthonormal basis for TS7 can

be done similarly. Thus, the simple method of constructing unit vector fields by switching

pairs of coordinates and multiplying one element in each pair by −1 can be used to create a

moving orthonormal basis for the tangent bundles of S1, S3, and S7. As no other sphere has

a moving basis for its tangent bundle, we now focus on moving FUNTFs. A FUNTF is able

to reconstruct every vector in Rn exactly, and hence the vectors that comprise a FUNTF are

in this respect, distributed uniformly across Rn. Thus, it is natural to assume that whether

or not a set of vector fields of the form {fU}U∈A is a moving FUNTF depends on whether

or not the set A in some respect uniformly switches pairs of coordinates and in some respect

uniformly inserts negative signs. With this in mind, we introduce the following definition.

Definition 3.2. Let n ∈ N and A ⊂ A2n. We say that A is balanced if the following two

conditions are satisfied for all 1 ≤ p, q ≤ 2n with p 6= q.

a) #
{
U(εi,ki)2ni=1

∈ A
∣∣ kp = q

}
= #A

2n−1 ,

and for all 1 ≤ r, s ≤ 2n with p, q, r, and s all being distinct integers,

b) #
{
U(εi,ki)2ni=1

∈ A
∣∣ εpεq = −1, {kr, ks} = {p, q}

}
= #

{
U(εi,ki)2ni=1

∈ A
∣∣ εpεq = 1, {kr, ks} = {p, q}

}
.
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For the sake of convenience, if A ⊂ A2n and 1 ≤ p, q ≤ 2n are distinct integers then we

denote Ap,q =
{
U(εi,ki)2ni=1

∈ A
∣∣ kp = q

}
, and if ε ∈ {−1, 1} and 1 ≤ p, q, r, s ≤ 2n are distinct

integers then we denote Ap,q,r,s,ε =
{
U(εi,ki)2ni=1

∈ A
∣∣ εpεq = ε, {kr, ks} = {p, q}

}
.

Verifying that a particular set A ⊂ A2n is balanced requires checking many different

equations, and it is not immediately obvious that balanced sets always exist. However, the

following lemma shows that the entire set A2n itself is balanced.

Lemma 3.3. For all n ∈ N, the set A2n is balanced.

Proof. Let n ∈ N. We first count the number of ways to choose an operator U(εi,ki)2ni=1
∈ A2n.

We may count (2n − 1) ways to choose k1 from {1, ..., 2n} \ {1}. If i2 is the first element

of {1, ..., 2n} \ {1, k1} then there are (2n − 3) choices for ki2 from {1, ..., 2n} \ {1, k1, i2}.

Continuing in this manner gives (2n−1)(2n−3)...3 ·1 ways to choose (ki)
2n
i=1 for an operator

U(εi,ki)2ni=1
∈ A2n. For each 1 ≤ i ≤ 2n, there are two ways to choose (εi, εki). As there are n

of these pairs, we have that, #A2n = (2n− 1)(2n− 2)...3 · 1 · 2n = (2n−1)(2n−2)...3·1·2nn!
n!

= (2n)!
n!

.

Let 1 ≤ p, q ≤ 2n such that p 6= q. We now count the elements in the set Ap,q. Given a

choice of (εq, εp) and setting kp = q and kq = p, there are #A2n−2 choices for (εi, ki)1≤i≤2n,i6=p,q

such that U(εi,ki)2ni=1
∈ A2n. As there are 2 choices for (εp, εq), we have that

#Ap,q = 2#A2n−2 = 2
(2n− 2)!

(n− 1)!
=

2n(2n− 1)(2n− 2)!

n(2n− 1)(n− 1)!
=

(2n)!

(2n− 1)n!
=

#A2n

2n− 1
.

Thus condition i) is satified. We now show that condition b) is satisfied. Let 1 ≤ p, q, r, s ≤ 2n

such that p, q, r, and s are all distinct integers. For all 1 ≤ i ≤ 2n and U(εi,ki)2ni=1
∈ Ap,q,r,s,−1,

we let δi = −1 if i ∈ {p, kp} and δi = 1 otherwise. We define a map φ : Ap,q,r,s,−1 → Ap,q,r,s,1

by φ(U(εi,ki)2ni=1
) = U(δiεi,ki)2ni=1

. This is a bijection, and hence #Ap,q,r,s,−1 = #Ap,q,r,s,1. �

Lemma 3.3 gives in particular that for all n ∈ N there exists a balanced subset of A2n.

The following theorem then proves that there exists a moving FUNTF for S2n−1 for every

n ∈ N.
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Theorem 3.4. For all n ∈ N, a subset A ⊂ A2n is balanced if and only if {fU}U∈A is a

moving FUNTF for S2n−1.

Proof. Let n ∈ N and A ⊂ A2n. Note that for all a ∈ S2n−1, we have that a⊥ = TaS
2n−1.

By Facts 2.2 and 2.3, for each a ∈ S2n−1, {fU(a)}U∈A is a FUNTF for TaS
2n−1 if and only if{√

#A
(2n−1)a

}
∪
{
fU(a)

}
U∈A is a tight frame for R2n with frame bound #A

2n−1 .

Assume that A ⊂ A2n is not balanced. A fails either condition a) or condition b). We

first assume that A fails condition a). We have that there exists 1 ≤ p, q ≤ 2n such that

#Ap,q 6= #A
2n−1 . We will use Fact 2.1 to show that

{√
#A

(2n−1)
1√
2
(ep+eq)

}
∪
{
U( 1√

2
(ep+eq))

}
U∈A

is not a tight frame for R2n by showing that the reconstruction formula applied to ep is not

orthogonal to eq. We let a = 1√
2
(ep + eq).

#A

(2n− 1)
〈a, ep〉〈a, eq〉+

∑
U∈A

〈Ua, ep〉〈Ua, eq〉 =
#A

(2n− 1)

1

2
+
∑

U∈Ap,q

εkqεkp
1√
2

1√
2

=
#A

(2n− 1)

1

2
+
∑

U∈Ap,q

−1

2
as kp = q

=
1

2

(
#A

(2n− 1)
−#Ap,q

)
6= 0

Thus,
{√

#A
(2n−1)a

}
∪
{
U(a)

}
U∈A is not a tight frame for R2n by Fact 2.1 and hence

{
U(a)

}
U∈A

is not a tight frame for TaS
2n−1 by Fact 2.2. We now assume that A fails condition b). There

exist distinct integers 1 ≤ p, q, r, s ≤ 2n such that #Ap,q,r,s,−1 6= #Ap,q,r,s,1. We will show

that
{√

#A
(2n−1)

1√
2
(ep + eq)

}
∪
{
U( 1√

2
(ep + eq))

}
U∈A

is not a tight frame for T 1√
2
(ep+eq)

S2n−1

by showing that the reconstruction formula applied to er is not orthogonal to es. We let

a = 1√
2
(ep + eq).

#A

(2n− 1)
〈a, er〉〈a, es〉+

∑
U∈A

〈Ua, er〉〈Ua, es〉 = 0 +
∑

U∈Ap,q,r,s,1∪Ap,q,r,s,−1

〈Ua, er〉〈Ua, es〉

=
∑

U∈Ap,q,r,s,1

1

2
+

∑
U∈Ap,q,r,s,−1

−1

2
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=
1

2
(#Ap,q,r,s,1 −#Ap,q,r,s,−1) 6= 0

Thus,
{√

#A
(2n−1)a

}
∪
{
U(a)

}
U∈A is not a tight frame for R2n by Fact 2.1 and hence

{
U(a)

}
U∈A

is not a tight frame for TaS
2n−1 by Fact 2.2. Thus, if A ⊂ A2n is not balanced then (fU)U∈A

is not a moving FUNTF for S2n−1.

Assume that A ⊂ A2n is balanced. We will show that
{√

#A
(2n−1)a

}
∪
{
U(a)

}
U∈A is a tight

frame for R2n for all a ∈ S2n−1. Let a = (ai)
2n
i=1 ∈ S2n−1 ⊂ R2n and 1 ≤ p, q ≤ 2n with p 6= q.

#A

(2n− 1)
〈a, ep〉〈a, eq〉+

∑
U∈A

〈Ua, ep〉〈Ua, eq〉 =
#A

(2n− 1)
apaq +

∑
U∈A

εkpεkqakpakq

=
#A

(2n− 1)
apaq +

∑
U∈Ap,q

−aqap +
∑

r 6=p,r 6=q
s6=p,s 6=q

 ∑
U∈Ap,q,r,s,1

aras +
∑

U∈Ap,q,r,s,−1

−aras


=

#A

(2n− 1)
apaq −#Ap,qaqap + 0 = 0 as A is balanced.

Thus the reconstruction formula applied to ep is orthogonal to eq. We now let a = (ai)
2n
i=1 ∈

S2n−1 ⊂ R2n and 1 ≤ p ≤ 2n.

#A

2n− 1
〈a, ep〉2 +

∑
U∈A

〈Ua, ep〉2 =
#A

2n− 1
a2p +

∑
U∈A

a2kp

=
#A

2n− 1
a2p +

∑
q 6=p

∑
U∈Ap,q

a2q

=
#A

2n− 1
a2p +

∑
q 6=p

#A

2n− 1
a2q as A is balanced.

=
#A

2n− 1
as ‖a‖ = 1
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Thus,
{√

#A
(2n−1)a

}
∪
{
U(a)

}
U∈A is a tight frame for R2n with frame bound #A

2n−1 by Fact 2.1.

This gives us that {U(a)}U∈A is a tight frame for TaS
n for all a ∈ Sn by Fact 2.2, and hence

{fU}U∈A is a moving FUNTF for S2n−1. �

By Lemma 3.3 and Theorem 3.4, we have for all n ∈ N, that (fU)U∈A2n is a moving

FUNTF for S2n−1. Thus, as in the proof of Lemma 3.3, S2n−1 has a moving FUNTF of (2n)!
n!

vector fields for all n ∈ N. The natural next step is to find FUNTFs comprised of fewer

vector fields. That is, our goal is to now find a proper subset of A2n which is balanced.

Theorem 3.5. For all n ∈ N, there exists a balanced subset A ⊂ A2n with #A = (2n −

1)2n−1. In particular, S2n−1 has a moving FUNTF of (2n−1)2n−1 vector fields for all n ∈ N.

Proof. Let n ∈ N. Our first goal is to create a subset B ⊂ {1, .., 2n}2n such that

a) If (ki)
2n
i=1 ∈ B then ki 6= i and kki = i for all 1 ≤ i ≤ 2n

b) If 1 ≤ r, s ≤ 2n and r 6= s then there exists (ki)
2n
i=1 ∈ B such that kr = s

c) If (ki)
2n
i=1, (`i)

2n
i=1 ∈ B then ki 6= `i for all 1 ≤ i ≤ 2n

Essentially, B would be a set of ways to pair up the components of R2n such that any two

components are paired up by exactly one permutation from B. Assuming we have created

such a set B, we may define A ⊂ A2n by

A =
{
U(εi,ki)2ni=1

∈ A2n

∣∣ ε1 = 1, εi = −εki , (ki)
2n
i=1 ∈ B.

}
That is, we define A by pairing up each permutation in B with all possible sequences (εi)

2n
i=1

such that ε1 = 1. Due to the restrictions on B, it is straightforward to check that the

resulting set A will be balanced. The set B contains 2n− 1 elements, and for each choice of
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(ki)
2n
i=1 ∈ B there are 2n−1 choices for (εi)

2n
i=1. Thus, #A = (2n− 1)2n−1. All that remains is

to show that such a set B exists.

To create B, we will construct a 2n× 2n symmetric matrix M such that every row (and

column) of M is a permutation of {0, 1, ..., 2n − 1} and the diagonal of M is constant 0.

Given such a matrix M = [mi,j]1≤i,j≤2n, for all 1 ≤ i, j < 2n we let kji be the column number

whose entry in the ith row of M equals j. Then we may set B :=
{

(kji )
2n
i=1

}
1≤j<2n

. We have

that a) is satisfied as M has 0 diagonal and is symmetric. We have that b) is satisfied as if

1 ≤ r, s ≤ 2n with r 6= s then k
mr,s
r = s. We have that c) is satisfied as each row of M is a

permutation of {0, 1, ..., 2n− 1}.

Thus, to create B, we need to construct a 2n×2n symmetric matrix M such that every row

(and column) of M is a permutation of {0, 1, ..., 2n− 1} and the diagonal of M is constant

0. We create M = [mi,j]1≤i,j≤2n by defining mi,j for each 1 ≤ i, j ≤ 2n by

mi,j =



0 if i = j,

(i+ j − 2) mod(2n− 1) + 1 if i 6= j and 1 ≤ i, j < 2n,

(2i− 2) mod(2n− 1) + 1 if j = 2n and 1 ≤ i < n,

(2j − 2) mod(2n− 1) + 1 if i = 2n and 1 ≤ j < n.

If we were to write out the matrix, it would look like:
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

0 2 3 4 · · · · · · 2n−4 2n−3 2n−2 2n−1 1

2 0 4 5 · · · · · · 2n−3 2n−2 2n−1 1 3

3 4 0 6 · · · · · · 2n−2 2n−1 1 2 5
...

. . .
...

2n− 3 2n−2 2n−1 1 · · · · · · 2n−7 0 2n−5 2n−4 2n−6

2n−2 2n−1 1 2 · · · · · · 2n−6 2n−5 0 2n−3 2n−4

2n−1 1 2 3 · · · · · · 2n−5 2n−4 2n−3 0 2n−2

1 3 5 7 · · · 2n−1 2 · · · 2n−8 2n−6 2n−4 2n−2 0


Switching the variables i and j in the definition of mi,j leaves mi,j unchanged and hence,

M is symmetric. Setting mi,j = 0 if i = j guarantees that M has constant 0 diagonal.

To show that each row of M is a permutation of {0, 1, ..., 2n − 1} we first consider 1 ≤

i < 2n. The sequence
(
(i + j − 2) mod(2n − 1)

)2n−1
j=1

is a permutation of (j)2n−2j=0 and hence(
(i + j − 2) mod(2n− 1) + 1

)2n−1
j=1

is a permutation of (j)2n−1j=1 . The ith row of M is formed

by concatenating 0 as the 2nth element of the sequence
(
(i + j − 2) mod(2n − 1) + 1

)2n−1
j=1

then switching the ith and the 2nth element. Thus the ith row of M is a permutation of

(j)2n−1j=0 when 1 ≤ i < 2n. For the case i = 2n, we have that
(
(2j − 2) mod(2n− 1)

)2n−1
j=1

is a

permutation of (j)2n−2j=0 as 2 and 2n− 1 are relatively prime, and hence
(
(2j − 2) mod(2n−

1) + 1
)2n−1
j=1

is a permutation of (j)2n−1j=1 . The 2nth row of M is formed by concatenating 0 as

the 2nth element of the sequence
(
(2j−2) mod(2n−1)+1

)2n−1
j=1

, and hence is a permutation

of (j)2n−1j=0 . Thus, we have formed a matrix M satisfying all our desired properties, and the

proof is complete.

�
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