The work of Nigel Kalton on greedy algorithms in Banach Spaces

July, 2011
References

Greedy Ordering

Let \((e_i)_{i=1}^{\infty}\) be a basis for a Banach space \(X\) with biorthogonal functionals \((e_i^*)_{i=1}^{\infty}\), i.e.

\[
x = \sum_{i=1}^{\infty} e_i^*(x)e_i \quad (x \in X).
\]

We assume that \((e_i)\) is semi-normalized, i.e. there exist constants \(0 < a \leq b\) such that

\[
a \leq \|e_i\| \leq b \quad (i \geq 1).
\]

For every \(x \in X\) we define the greedy ordering for \(x\) as the map \(\rho_x : \mathbb{N} \to \mathbb{N}\) which arranges the coefficients of \(x\) in decreasing order of absolute value.

The \(m\)-th greedy approximation is then given by

\[
G_m(x) = \sum_{j=1}^{m} e_{\rho_x(j)}^*(x)e_{\rho_x(j)}.
\]
Greedy Ordering

Let \((e_i)_{i=1}^\infty\) be a basis for a Banach space \(X\) with biorthogonal functionals \((e_i^*)_{i=1}^\infty\), i.e.

\[
x = \sum_{i=1}^{\infty} e_i^*(x)e_i \quad (x \in X).
\]

We assume that \((e_i)\) is semi-normalized, i.e. there exist constants \(0 < a \leq b\) such that

\[
a \leq \|e_i\| \leq b \quad (i \geq 1).
\]

For every \(x \in X\) we define the greedy ordering for \(x\) as the map \(\rho_x : \mathbb{N} \to \mathbb{N}\) which arranges the coefficients of \(x\) in decreasing order of absolute value.

The \(m\)-th greedy approximation is then given by

\[
G_m(x) = \sum_{j=1}^{m} e_{\rho_x(j)}^*(x)e_{\rho_x(j)}.
\]
Greedy Ordering

Let \((e_i)_{i=1}^\infty\) be a basis for a Banach space \(X\) with biorthogonal functionals \((e_i^*)_{i=1}^\infty\), i.e.

\[
x = \sum_{i=1}^\infty e_i^*(x)e_i \quad (x \in X).
\]

We assume that \((e_i)\) is semi-normalized, i.e. there exist constants \(0 < a \leq b\) such that

\[
a \leq \|e_i\| \leq b \quad (i \geq 1).
\]

For every \(x \in X\) we define the greedy ordering for \(x\) as the map \(\rho_x : \mathbb{N} \to \mathbb{N}\) which arranges the coefficients of \(x\) in decreasing order of absolute value.

The \(m\)-th greedy approximation is then given by

\[
G_m(x) = \sum_{j=1}^m e_{\rho_x(j)}^*(x)e_{\rho_x(j)}.
\]
The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \rightarrow x$.

Example

Suppose $x = e_1 - 3e_2 - 4e_5 + 2e_7$.

Then

\[
G_1(x) = -4e_5; \quad G_2(x) = -4e_5 - 3e_2, \\
G_3(x) = -4e_5 - 3e_2 + 2e_7, \\
G_4(x) = -4e_5 - 3e_2 + 2e_7 + e_1,
\]

and

\[
\rho_x(1) = 5; \quad \rho_x(2) = 2; \quad \rho_x(3) = 7; \quad \rho_x(4) = 1.
\]
The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \to x$.

Example

Suppose $x = e_1 - 3e_2 - 4e_5 + 2e_7$.

Then

$$G_1(x) = -4e_5; \quad G_2(x) = -4e_5 - 3e_2,$$

$$G_3(x) = -4e_5 - 3e_2 + 2e_7,$$

$$G_4(x) = -4e_5 - 3e_2 + 2e_7 + e_1,$$

and

$$\rho_x(1) = 5; \quad \rho_x(2) = 2; \quad \rho_x(3) = 7; \quad \rho_x(4) = 1.$$
The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \to x$.

Example
Suppose $x = e_1 - 3e_2 - 4e_5 + 2e_7$. Then

$$G_1(x) = -4e_5; \quad G_2(x) = -4e_5 - 3e_2,$$
$$G_3(x) = -4e_5 - 3e_2 + 2e_7,$$
$$G_4(x) = -4e_5 - 3e_2 + 2e_7 + e_1,$$

and

$$\rho_x(1) = 5; \, \rho_x(2) = 2; \, \rho_x(3) = 7; \, \rho_x(4) = 1.$$
Convergence of the TGA

Definition (Konyagin-Temlyakov)

(e_i) is quasi-greedy (QG) if there exists a constant K (the quasi-greedy constant) such that

$$\|G_n(x)\| \leq K\|x\| \quad (x \in X, \ n \geq 1).$$

Theorem (Wojtaszczyk)

(e_i) is quasi-greedy (QG) if and only if the TGA converges, i.e.

$$\forall x \in X$$

$$x = \sum_{j=1}^{\infty} e_{\rho_x(j)}^*(x)e_{\rho_x(j)}.$$

• Note that a basis (e_i) is unconditional if every rearrangement of $x = \sum e_i^*(x)e_i$ converges, so

unconditional \Rightarrow QG.
Convergence of the TGA

Definition (Konyagin-Temlyakov)

\((e_i)\) is quasi-greedy (QG) if there exists a constant \(K\) (the quasi-greedy constant) such that

\[
\|G_n(x)\| \leq K\|x\| \quad (x \in X, \ n \geq 1).
\]

Theorem (Wojtaszczyk)

\((e_i)\) is quasi-greedy (QG) if and only if the TGA converges, i.e.

\[
\forall x \in X \quad x = \sum_{j=1}^{\infty} e^*_{\rho_x(j)}(x)e_{\rho_x(j)}.
\]

- Note that a basis \((e_i)\) is unconditional if every rearrangement of \(x = \sum e^*_i(x)e_i\) converges, so

unconditional \(\Rightarrow\) QG.
Convergence of the TGA

Definition (Konyagin-Temlyakov)

\((e_i)\) is quasi-greedy (QG) if there exists a constant \(K\) (the quasi-greedy constant) such that

\[\|G_n(x)\| \leq K\|x\| \quad (x \in X, n \geq 1). \]

Theorem (Wojtaszczyk)

\((e_i)\) is quasi-greedy (QG) if and only if the TGA converges, i.e.

\[\forall x \in X \quad x = \sum_{j=1}^{\infty} e^*_{\rho_x(j)}(x)e_{\rho_x(j)}. \]

Note that a basis \((e_i)\) is unconditional if every rearrangement of \(x = \sum e^*_i(x)e_i\) converges, so

unconditional \(\Rightarrow\) QG.
Convergence of the TGA

Definition (Konyagin-Temlyakov)

\((e_i)\) is quasi-greedy (QG) if there exists a constant \(K\) (the quasi-greedy constant) such that

\[
\|G_n(x)\| \leq K \|x\| \quad (x \in X, \ n \geq 1).
\]

Theorem (Wojtaszczyk)

\((e_i)\) is quasi-greedy (QG) if and only if the TGA converges, i.e. \(\forall x \in X\)

\[
x = \sum_{j=1}^{\infty} e^*_\rho_x(j)(x)e_{\rho x}(j).
\]

• Note that a basis \((e_i)\) is unconditional if every rearrangement of \(x = \sum e^*_i(x)e_i\) converges, so

unconditional \(\Rightarrow\) QG.
Existence of QG bases

Proposition
the Haar basis for $L_1[0, 1]$ and the Schauder basis for $c[0, 1]$ are not QG.

Question
Do $L_1[0, 1]$ and $C[0, 1]$ have a QG basis?

Definition
A basis (e_n) is good if $\| \sum_{n \in A} e_n \| \to \infty$ as $|A| \to \infty$ (plus another more technical condition).

Example
Symmetric bases are good except for the unit vector bases of c_0 and ℓ_1.
Existence of QG bases

Proposition
the Haar basis for $L_1[0, 1]$ and the Schauder basis for $c[0, 1]$ are not QG.

Question
Do $L_1[0, 1]$ and $C[0, 1]$ have a QG basis?

Definition
A basis (e_n) is good if $\| \sum_{n \in A} e_n \| \to \infty$ as $|A| \to \infty$ (plus another more technical condition).

Example
Symmetric bases are good except for the unit vector bases of c_0 and ℓ_1.
Existence of QG bases

Proposition
The Haar basis for $L_1[0, 1]$ and the Schauder basis for $c[0, 1]$ are not QG.

Question
Do $L_1[0, 1]$ and $C[0, 1]$ have a QG basis?

Definition
A basis (e_n) is good if $\| \sum_{n \in A} e_n \| \to \infty$ as $|A| \to \infty$ (plus another more technical condition).

Example
Symmetric bases are good except for the unit vector bases of c_0 and ℓ_1.
Existence of QG bases

Proposition
the Haar basis for $L_1[0, 1]$ and the Schauder basis for $c[0, 1]$ are not QG.

Question
Do $L_1[0, 1]$ and $C[0, 1]$ have a QG basis?

Definition
A basis (e_n) is good if $\| \sum_{n \in A} e_n \| \to \infty$ as $|A| \to \infty$ (plus another more technical condition).

Example
Symmetric bases are good except for the unit vector bases of c_0 and ℓ_1.

Theorem (DKK)
Suppose X has a basis and S has a good unconditional basis or $S = \ell_1$ then $S \oplus X$ has a QG basis.

Corollary (DKK)
$L_1[0, 1]$ and the Schatten ideals S_p ($1 \leq p < \infty$) have a QG basis.
Theorem (DKK)

Suppose X has a basis and S has a good unconditional basis or $S = \ell_1$ then $S \oplus X$ has a QG basis.

Corollary (DKK)

$L_1[0, 1]$ and the Schatten ideals S_p ($1 \leq p < \infty$) have a QG basis.
QG bases and Grothendieck’s theorem

Definition

X is a **GT space** if every bounded operator $T : X \to \ell_2$ is absolutely summing.

Theorem (DKK)

Suppose X^* is a GT space. If (e_n) is a QG basis for X then (e_n) is equivalent to the unit vector basis of c_0.

Corollary (DKK)

$C[0,1]$ and the disc algebra do not have a QG basis.

Corollary (DKK)

c_0 is the only Banach space to have a unique quasi-greedy basis up to basis equivalence.
QG bases and Grothendieck’s theorem

Definition
X is a **GT space** if every bounded operator $T : X \to \ell_2$ is absolutely summing.

Theorem (DKK)
Suppose X^* is a GT space. If (e_n) is a QG basis for X then (e_n) is equivalent to the unit vector basis of c_0.

Corollary (DKK)
$C[0, 1]$ and the disc algebra do not have a QG basis.

Corollary (DKK)
c_0 is the **only** Banach space to have a unique quasi-greedy basis up to basis equivalence.
QG bases and Grothendieck’s theorem

Definition
X is a GT space if every bounded operator $T : X \to \ell_2$ is absolutely summing.

Theorem (DKK)
Suppose X^* is a GT space. If (e_n) is a QG basis for X then (e_n) is equivalent to the unit vector basis of c_0.

Corollary (DKK)
$C[0, 1]$ and the disc algebra do not have a QG basis.

Corollary (DKK)
c_0 is the only Banach space to have a unique quasi-greedy basis up to basis equivalence.
QG bases and Grothendieck’s theorem

Definition

X is a **GT space** if every bounded operator $T : X \to \ell_2$ is absolutely summing.

Theorem (DKK)

Suppose X^ is a GT space. If (e_n) is a QG basis for X then (e_n) is equivalent to the unit vector basis of c_0.***

Corollary (DKK)

*C[0, 1] and the disc algebra do not have a QG basis.***

Corollary (DKK)

c_0 is the **only** Banach space to have a unique quasi-greedy basis up to basis equivalence.
Partial Unconditionality

Definition
(Elton) A semi-normalized basic sequence \((e_i)\) is nearly unconditional if for every \(\delta > 0\) there exists a constant \(K(\delta)\) such that for all coefficient sequences \((a_i)\), with \(\sup |a_i| \leq 1\), and all \(E \subset \{i : |a_i| \geq \delta\}\), we have

\[
\|P_E(\sum a_i e_i)\| \leq K(\delta) \| \sum a_i e_i \|.
\]

Remark
\((e_i)\) is unconditional if and only if

\[
\sup_{\delta > 0} K(\delta) < \infty
\]
Partial Unconditionality

Definition
(Elton) A semi-normalized basic sequence \((e_i)\) is nearly unconditional if for every \(\delta > 0\) there exists a constant \(K(\delta)\) such that for all coefficient sequences \((a_i)\), with \(\sup |a_i| \leq 1\), and all \(E \subset \{ i : |a_i| \geq \delta \}\), we have

\[
\| P_E(\sum a_i e_i) \| \leq K(\delta) \| \sum a_i e_i \|.
\]

Remark
\((e_i)\) is unconditional if and only if

\[
\sup_{\delta > 0} K(\delta) < \infty
\]
Partial Unconditionality

Definition

(Elton) A semi-normalized basic sequence \((e_i)\) is nearly unconditional if for every \(\delta > 0\) there exists a constant \(K(\delta)\) such that for all coefficient sequences \((a_i)\), with \(\sup |a_i| \leq 1\), and all \(E \subset \{i : |a_i| \geq \delta\}\), we have

\[
\|P_E(\sum a_i e_i)\| \leq K(\delta) \| \sum a_i e_i \|.
\]

Remark

\((e_i)\) is unconditional if and only if

\[
\sup_{\delta > 0} K(\delta) < \infty
\]
Theorem (Elton)
Every Banach space contains a nearly unconditional basic sequence.

Theorem (Gowers-Maurey)
\[\exists \text{ a Banach space GM without any unconditional basic sequence.} \]

Theorem
\[\Rightarrow \quad \text{QG} \Rightarrow \text{nearly unconditional.} \]
\[\exists \text{nearly unconditional sequences that are not QG.} \]

Problem
Does every Banach space contain a QG basic sequence?
Theorem (Elton)

Every Banach space contains a nearly unconditional basic sequence.

Theorem (Gowers-Maurey)

∃ a Banach space GM without any unconditional basic sequence.

Theorem

▶ QG ⇒ nearly unconditional.
▶ ∃ nearly unconditional sequences that are not QG.

Problem

Does every Banach space contain a QG basic sequence?
Theorem (Elton)
Every Banach space contains a nearly unconditional basic sequence.

Theorem (Gowers-Maurey)
∃ a Banach space GM without any unconditional basic sequence.

Theorem

- QG ⇒ nearly unconditional.
- ∃ nearly unconditional sequences that are not QG.

Problem
Does every Banach space contain a QG basic sequence?
Theorem (Elton)
Every Banach space contains a nearly unconditional basic sequence.

Theorem (Gowers-Maurey)
\(\exists \) a Banach space GM without any unconditional basic sequence.

Theorem

- QG \(\Rightarrow \) nearly unconditional.
- \(\exists \) nearly unconditional sequences that are not QG.

Problem
Does every Banach space contain a QG basic sequence?
Type and Cotype

Definition

- Let $2 \leq q < \infty$. X has **cotype** q if $\exists C_q$
 $\forall n \geq 1, x_1, \ldots, x_n \in X$

\[
\left(\sum \|x_i\|^q \right)^{1/q} \leq C_q \text{Ave}_\pm \| \sum \pm x_i \|
\]

- Let $1 < p \leq 2$. X has **type** p if $\exists C_p$ $\forall n \geq 1, x_1, \ldots, x_n \in X$

\[
T_p\left(\sum \|x_i\|^p \right)^{1/p} \geq \text{Ave}_\pm \| \sum \pm x_i \|
\]

Example

$L_p[0, 1]$ has cotype $\max(2, p)$ and type $\min(2, p)$.
Type and Cotype

Definition

- Let $2 \leq q < \infty$. X has **cotype q** if $\exists C_q$
 $\forall n \geq 1, x_1, \ldots, x_n \in X$

 $$(\sum \|x_i\|^q)^{1/q} \leq C_q \text{Ave}_{\pm} \| \sum \pm x_i \|$$

- Let $1 < p \leq 2$. X has **type p** if $\exists C_p$ $\forall n \geq 1, x_1, \ldots, x_n \in X$

 $$T_p(\sum \|x_i\|^p)^{1/p} \geq \text{Ave}_{\pm} \| \sum \pm x_i \|$$

Example

$L_p[0, 1]$ has cotype $\max(2, p)$ and type $\min(2, p)$.
Type and Cotype

Definition

- Let $2 \leq q < \infty$. X has cotype q if $\exists C_q$ \hspace{1cm} \forall n \geq 1, x_1, \ldots, x_n \in X$
 \hspace{2cm} \left(\sum \|x_i\|^q \right)^{1/q} \leq C_q \text{Ave}_{\pm} \left\| \sum \pm x_i \right\|

- Let $1 < p \leq 2$. X has type p if $\exists C_p$ \hspace{1cm} \forall n \geq 1, x_1, \ldots, x_n \in X$
 \hspace{2cm} T_p\left(\sum \|x_i\|^p \right)^{1/p} \geq \text{Ave}_{\pm} \left\| \sum \pm x_i \right\|

Example

$L_p[0, 1]$ has cotype $\max(2, p)$ and type $\min(2, p)$.
Theorem (DKK)

If X has finite cotype (i.e. cotype q for some $q < \infty$) then every semi-normalized weakly null sequence has a QG subsequence. So X contains a QG sequence.

Theorem (DOSZ, 2009)

c_0 can be renormed so that the QG constant of every subsequence of the unit vector basis is at least $8/7$.
Theorem (DKK)

If X has finite cotype (i.e. cotype q for some $q < \infty$) then every semi-normalized weakly null sequence has a QG subsequence. So X contains a QG sequence.

Theorem (DOSZ, 2009)

c₀ can be renormed so that the QG constant of every subsequence of the unit vector basis is at least $8/7$.
Best n-term approximation

For $x \in X$, the error in the best n-term approximation to x is given by:

$$\sigma_n(x) = \inf\{\|x - \sum_{j \in A} \alpha_j e_j\| : |A| = n, \alpha_j \in \mathbb{R}\}.$$

Hence $\sigma_n(x) \leq \|x - G_n(x)\|$.

Definition (Konyagin-Temlyakov)

(e_i) is greedy with greedy constant $C \geq 1$

$$\|x - G_n(x)\| \leq C \sigma_n(x) \quad (x \in X, n \in \mathbb{N}).$$

Example

- The unit vector basis of ℓ_p or c_0 is 1-greedy.
- Every symmetric basis is greedy.
Best \(n \)-term approximation

For \(x \in X \), the error in the best \(n \)-term approximation to \(x \) is given by:

\[
\sigma_n(x) = \inf \{ \| x - \sum_{j \in A} \alpha_j e_j \| : |A| = n, \alpha_j \in \mathbb{R} \}.
\]

Hence \(\sigma_n(x) \leq \| x - G_n(x) \| \).

Definition (Konyagin-Temlyakov)

\((e_i)\) is greedy with greedy constant \(C \geq 1 \)

\[
\| x - G_n(x) \| \leq C\sigma_n(x) \quad (x \in X, n \in \mathbb{N}).
\]

Example

- The unit vector basis of \(\ell_p \) or \(c_0 \) is 1-greedy.
- Every symmetric basis is greedy.
Best n-term approximation

For $x \in X$, the error in the best n-term approximation to x is given by:

$$\sigma_n(x) = \inf\{\|x - \sum_{j \in A} \alpha_j e_j\| : |A| = n, \alpha_j \in \mathbb{R}\}.$$

Hence $\sigma_n(x) \leq \|x - G_n(x)\|$.

Definition (Konyagin-Temlyakov)

(e_i) is greedy with greedy constant $C \geq 1$

$$\|x - G_n(x)\| \leq C \sigma_n(x) \quad (x \in X, n \in \mathbb{N}).$$

Example

- The unit vector basis of ℓ_p or c_0 is 1-greedy.
- Every symmetric basis is greedy.
Best n-term approximation

For $x \in X$, the error in the best n-term approximation to x is given by:

$$
\sigma_n(x) = \inf\{\|x - \sum_{j \in A} \alpha_j e_j\| : |A| = n, \alpha_j \in \mathbb{R}\}.
$$

Hence $\sigma_n(x) \leq \|x - G_n(x)\|$.

Definition (Konyagin-Temlyakov)

(e_i) is greedy with greedy constant $C \geq 1$

$$
\|x - G_n(x)\| \leq C\sigma_n(x) \quad (x \in X, n \in \mathbb{N}).
$$

Example

- The unit vector basis of ℓ_p or c_0 is 1-greedy.
- Every symmetric basis is greedy.
Theorem (Temlyakov)

The Haar basis of $L^p[0, 1]$ is greedy for $1 < p < \infty$.

Democratic Bases

Definition

• The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is given by:

$$
\varphi(n) := \sup_{|A| \leq n} \left\| \sum_{i \in A} e_i \right\|.
$$

• (e_i) is democratic with constant Δ if \forall finite $A \subset \mathbb{N}$,

$$
\varphi(|A|) \leq \Delta \left\| \sum_{i \in A} e_i \right\|.
$$

Thus, if $|A| = |B|$, then

$$
\frac{1}{\Delta} \left\| \sum_{i \in B} e_i \right\| \leq \left\| \sum_{i \in A} e_i \right\| \leq \Delta \left\| \sum_{i \in B} e_i \right\|.
$$
Theorem (Temlyakov)

The Haar basis of $L_p[0, 1]$ is greedy for $1 < p < \infty$.

Democratic Bases

Definition

- The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is given by:

$$\varphi(n) := \sup_{|A| \leq n} \left\| \sum_{i \in A} e_i \right\|.$$

- (e_i) is democratic with constant Δ if \forall finite $A \subset \mathbb{N}$,

$$\varphi(|A|) \leq \Delta \left\| \sum_{i \in A} e_i \right\|.$$

Thus, if $|A| = |B|$, then

$$\frac{1}{\Delta} \left\| \sum_{i \in B} e_i \right\| \leq \left\| \sum_{i \in A} e_i \right\| \leq \Delta \left\| \sum_{i \in B} e_i \right\|.$$
Theorem (Temlyakov)

The Haar basis of $L_p[0, 1]$ *is greedy for* $1 < p < \infty$.

Democratic Bases

Definition
- The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is given by:

$$
\varphi(n) := \sup_{|A| \leq n} \left\| \sum_{i \in A} e_i \right\|.
$$

- (e_i) is democratic with constant Δ if \(\forall \) finite $A \subset \mathbb{N}$,

$$
\varphi(|A|) \leq \Delta \left\| \sum_{i \in A} e_i \right\|.
$$

Thus, if $|A| = |B|$, then

$$
\frac{1}{\Delta} \left\| \sum_{i \in B} e_i \right\| \leq \left\| \sum_{i \in A} e_i \right\| \leq \Delta \left\| \sum_{i \in B} e_i \right\|.
$$
Theorem (Temlyakov)

The Haar basis of \(L_p[0, 1] \) is greedy for \(1 < p < \infty \).

Democratic Bases

Definition
- The fundamental function \(\varphi : \mathbb{N} \to \mathbb{R} \) of \((e_i) \) is given by:
 \[
 \varphi(n) := \sup_{|A| \leq n} \left\| \sum_{i \in A} e_i \right\|.
 \]
- \((e_i) \) is democratic with constant \(\Delta \) if \(\forall \) finite \(A \subset \mathbb{N} \),
 \[
 \varphi(|A|) \leq \Delta \left\| \sum_{i \in A} e_i \right\|.
 \]

Thus, if \(|A| = |B| \), then
 \[
 \frac{1}{\Delta} \left\| \sum_{i \in B} e_i \right\| \leq \left\| \sum_{i \in A} e_i \right\| \leq \Delta \left\| \sum_{i \in B} e_i \right\|.
 \]
Theorem (Konyagin-Temlyakov)

A basis is greedy if and only if it is unconditional and democratic
Almost greedy bases

Definition
The error in the best \(n \) term projection approximating \(x \) is given by
\[
\tilde{\sigma}_n(x) = \inf\{\|x - \sum_{j \in A} e^*_j(x)e_j\| : |A| \leq n\}.
\]

Theorem (DKKT)
The following are equivalent:

\(\exists C \) such that
\[
\|x - G_n(x)\| \leq C\tilde{\sigma}_n(x) \quad (x \in X, n \geq 1).
\]

\((e_i) \) is \textit{QG and democratic}.

\(\exists C \) such that
\[
\|x - G_{2n}(x)\| \leq C\sigma_n(x) \quad (x \in X, n \geq 1).
\]
Almost greedy bases

Definition
The error in the best n term projection approximating x is given by

$$\tilde{\sigma}_n(x) = \inf \{ \| x - \sum_{j \in A} e_j^*(x)e_j \| : |A| \leq n \}.$$

Theorem (DKKT)

The following are equivalent:

1. $\exists C$ such that $\| x - G_n(x) \| \leq C\tilde{\sigma}_n(x)$ $(x \in X, n \geq 1)$.

2. (e_i) is QG and democratic.

3. $\exists C$ such that $\| x - G_{2n}(x) \| \leq C\sigma_n(x)$ $(x \in X, n \geq 1)$.
Almost greedy bases

Definition
The error in the best n term projection approximating x is given by

$$\tilde{\sigma}_n(x) = \inf \{ \|x - \sum_{j \in A} e_j^*(x) e_j\| : |A| \leq n\}.$$

Theorem (DKKT)

The following are equivalent:

1. $\exists C$ such that $\|x - G_n(x)\| \leq C\tilde{\sigma}_n(x)$ (for $x \in X, n \geq 1$).
2. (e_i) is QG and democratic.
3. $\exists C$ such that $\|x - G_{2n}(x)\| \leq C\sigma_n(x)$ (for $x \in X, n \geq 1$).
Definition

\((e_i)\) is almost greedy if \((e_i)\) is QG and democratic

Theorem (DKK)

Suppose \(X\) has a basis and contains a complemented subspace with a symmetric basis that is not \(c_0\). Then \(X\) has an almost greedy basis.

Theorem (DKK)

Let \(X\) be a Banach space. The following are equivalent:

- \(X\) contains an almost greedy basic sequence;
- \(X\) contains \(c_0\) or \(\ell_1\) or \(X\) has a spreading model generated by a weakly null sequence that is not equivalent to the unit vector basis of \(c_0\).
Definition

(e_i) is almost greedy if (e_i) is QG and democratic

Theorem (DKK)

Suppose X has a basis and contains a complemented subspace with a symmetric basis that is not c_0. Then X has an almost greedy basis.

Theorem (DKK)

Let X be a Banach space. The following are equivalent:

- X contains an almost greedy basic sequence;
- X contains c_0 or \ell_1 or X has a spreading model generated by a weakly null sequence that is not equivalent to the unit vector basis of c_0.
Definition

\((e_i)\) is almost greedy if \((e_i)\) is QG and democratic

Theorem (DKK)

Suppose \(X\) has a basis and contains a complemented subspace with a symmetric basis that is not \(c_0\). Then \(X\) has an almost greedy basis.

Theorem (DKK)

Let \(X\) be a Banach space. The following are equivalent:

\(\begin{align*}
\text{\(X\) contains an almost greedy basic sequence;} \\
\text{\(X\) contains \(c_0\) or \(\ell_1\) or \(X\) has a spreading model generated by a weakly null sequence that is not equivalent to the unit vector basis of \(c_0\).}
\end{align*}\)
Semi-greedy bases

For $x \in X$, let $G_n^C(x)$ be a best approximation to x from $\text{span}\{e_{\rho(i)} : 1 \leq i \leq n\}$, i.e.

$$\|x - G_n^C(x)\| = \min\{\|x - \sum_{i=1}^{n} a_i e_{\rho(i)}\| : (a_i)_{i=1}^{n} \in \mathbb{R}^n\}.$$

Definition

(e_i) is **semi-greedy** if there exists a constant K such that

$$\|x - G_n^C(x)\| \leq K\sigma_n(x) \quad (n \geq 1, x \in X).$$
Theorem (DKK)

- *almost greedy* \Rightarrow *semi-greedy*.
- *The converse holds if* X *has finite cotype.*

In the general case we have the following:

Semi-greedy \Rightarrow *democratic.*

Problem

Does semi-greedy imply quasi-greedy in general?
Theorem (DKK)

- *almost greedy* ⇒ *semi-greedy*.
- *The converse holds if* X *has finite cotype.*

In the general case we have the following:

Semi-greedy ⇒ democratic.

Problem

Does semi-greedy imply quasi-greedy in general?
Duality

Duality fails in general:

- If \((e_i)\) is greedy then \((e_i^*)\) may fail to be democratic.
- If \((e_i)\) is QG then \((e_i^*)\) may fail to be QG.

Definition

A fundamental function \((\varphi(n))\) has the upper regularity property (URP) if \(\exists C > 0\) and \(0 < \beta < 1\) such that

\[
\varphi(m) \leq C(m/n)^\beta \varphi(n) \quad (m > n).
\]

Theorem (DKKT)

If \((e_n)\) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then \((e_n^*)\) is a greedy (resp. almost greedy) basic sequence.
Duality

Duality fails in general:

- If \((e_i)\) is greedy then \((e_i^*)\) may fail to be democratic
- If \((e_i)\) is QG then \((e_i^*)\) may fail to be QG.

Definition
A fundamental function \((\varphi(n))\) has the upper regularity property (URP) if \(\exists C > 0\) and \(0 < \beta < 1\) such that

\[
\varphi(m) \leq C \left(\frac{m}{n}\right)^\beta \varphi(n) \quad (m > n).
\]

Theorem (DKKT)
If \((e_n)\) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then \((e_n^*)\) is a greedy (resp. almost greedy) basic sequence.
Duality

Duality fails in general:

- If \((e_i)\) is greedy then \((e_i^*)\) may fail to be democratic
- If \((e_i)\) is QG then \((e_i^*)\) may fail to be QG.

Definition

A fundamental function \((\varphi(n))\) has the upper regularity property (URP) if \(\exists C > 0\) and \(0 < \beta < 1\) such that

\[
\varphi(m) \leq C \left(\frac{m}{n}\right)^\beta \varphi(n) \quad (m > n).
\]

Theorem (DKKT)

If \((e_n)\) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then \((e_n^*)\) is a greedy (resp. almost greedy) basic sequence.
Duality

Duality fails in general:

- If \((e_i)\) is greedy then \((e_i^*)\) may fail to be democratic
- If \((e_i)\) is QG then \((e_i^*)\) may fail to be QG.

Definition
A fundamental function \((\varphi(n))\) has the upper regularity property (URP) if \(\exists C > 0\) and \(0 < \beta < 1\) such that

\[\varphi(m) \leq C(m/n)^\beta \varphi(n) \quad (m > n).\]

Theorem (DKKT)
If \((e_n)\) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then \((e_n^*)\) is a greedy (resp. almost greedy) basic sequence.
Duality

Duality fails in general:

- If \((e_i)\) is greedy then \((e_i^*)\) may fail to be democratic
- If \((e_i)\) is QG then \((e_i^*)\) may fail to be QG.

Definition

A fundamental function \((\varphi(n))\) has the upper regularity property (URP) if \(\exists C > 0\) and \(0 < \beta < 1\) such that

\[
\varphi(m) \leq C \left(\frac{m}{n}\right)^{\beta} \varphi(n) \quad (m > n).
\]

Theorem (DKKT)

If \((e_n)\) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then \((e_n^*)\) is a greedy (resp. almost greedy) basic sequence.
Corollary (DKKT)
Suppose X has type $p > 1$. If (e_n) is a greedy basis for X then (e^*_n) is a greedy basis for X^*

Corollary (DKKT)
Let (e_i) be a QG basis for a separable Hilbert space. Then both (e_i) and (e^*_i) are almost greedy bases for H.

Theorem (DKKT)
If $(\varphi(n))$ does not have URP then there exists a reflexive Banach space with a greedy basis whose fundamental function equivalent to φ whose dual basis is not greedy.
Characterization of duality

Definition
Let \((e_n)\) be a basis for \(X\) with fundamental function \((\varphi_n)\). Let \((\varphi_n^*)\) be the fundamental function for \((e_n^*)\). Then \((e_n)\) is bidemocratic if \(\exists C\) such that

\[
\varphi(n)\varphi^*(n) \leq Cn \quad (n \in \mathbb{N}).
\]

Theorem
Let \((e_n)\) be a QG basis for \(X\). The following are equivalent:

\(\varphi_n\) is bidemocratic

Both \((e_i)\) and \((e_i^*)\) are almost greedy.