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Abstract. We prove that the spaces L(`p, c0), L(`p, `∞) and L(`1, `q) of op-

erators with 1 < p, q < ∞ have continuum many closed ideals. This extends
and improves earlier works by Schlumprecht and Zsák [20], by Wallis [22] and

by Sirotkin and Wallis [19]. Several open problems remain. Key to our con-

struction of closed ideals are matrices with the Restricted Isometry Property
that come from Compressed Sensing.

1. Introduction

Closed ideals of operators between Banach spaces is a very old subject going
back to at least the 1940s when Calkin proved that the compact operators are
the only non-trivial, proper closed ideal of the algebra L(`2) of all bounded linear
maps on Hilbert space [4]. Two decades later Gohberg, Markus and Fel′dman [9]
showed that the same result holds for the algebras L(`p), 1 6 p < ∞, and L(c0).
It is perhaps surprising that the situation is vastly more complicated for the spaces
`p⊕`q and `p⊕c0, 1 6 p < q <∞. We refer the reader to Pietsch’s book ‘Operator
Ideals’ [15, Chapter 5] and to sections 1 and 2.3 of [20] for a detailed history of the
study of closed ideals on these spaces. Here we shall be fairly brief and concentrate
on developments that best place our new results in context.

Let X = `p and let Y be either `q or c0, where 1 6 p < q <∞. We recall [21] that
L(X⊕Y ) has exactly two maximal ideals: the closures of the ideals of operators fac-
toring through X and Y , respectively. Moreover, the set of all non-maximal, proper
closed ideals of L(X ⊕ Y ) is in a one-to-one, inclusion-preserving correspondence
with the set of all closed ideals of L(X,Y ) (see [15, Theorem 5.3.2] or Section 2
of [18]). Here an ideal of L(X,Y ) is a subspace J of L(X,Y ) with the ideal property :
ATB ∈ J whenever A ∈ L(Y ), T ∈ J and B ∈ L(X). In his book, Pietsch raised
the problem whether L(X,Y ) has infinitely many closed ideals in the case X = `p
and Y = `q with 1 6 p < q < ∞. This problem remained open for nearly forty
years. It is straightforward that the smallest non-trivial closed ideal is the ideal of
compact operators and that every other non-trivial closed ideal must contain the
closed ideal generated by the formal inclusion map IX,Y : X → Y . However, it
is not even obvious if there are any other non-trivial, proper closed ideals besides
the compact operators. The first results in this direction are due to Milman [13]
who first proved that IX,Y is finitely strictly singular, and then exhibited in the
case 1 < p < q < ∞ an operator in L(`p, `q) that is not finitely strictly singular.
(Definitions will be given in Section 2 below.) More recently, further closed ideals,
but still only finitely many, were found by Sari, Tomczak-Jaegermann, Troitsky and
Schlumprecht [17] and by Schlumprecht [18].
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Finally, Schlumprecht and Zsák found a positive answer to Pietsch’s question in
the reflexive range 1 < p < q < ∞. In fact, they showed [20] that in that range,
L(`p, `q) contains continuum many closed ideals which with respect to inclusion are
order-isomorphic to R. Shortly after this, Wallis observed [22] that the techniques
of [20] extend to prove the same result for L(`p, c0) in the range 1 < p < 2,
and for L(`1, `q) in the range 2 < q < ∞. The answer to Pietsch’s question was
completed by Sirotkin and Wallis [19] who proved that there are uncountably many
closed ideals in L(`1, `q) for 1 < q 6∞ as well as in L(`1, c0) and in L(`p, `∞) for
1 6 p < ∞. The techniques used in [20] and [19] are completely different and we
shall have more to say about this in the final section of this paper. The method of
Sirotkin and Wallis produces chains of closed ideals of size ω1, the first uncountable
ordinal. Moreover, their method can not tackle (for good reasons as we shall see
later) the question whether L(`p, c0) has infinitely many closed ideals in the range
2 6 p <∞. The main focus of this paper is this remaining open problem regarding
closed ideals of operators between classical sequence spaces. Our main result is a
solution of this problem as well as an extension of the result of Wallis for 1 < p < 2.

Theorem A. For all 1 < p < ∞ there are continuum many closed ideals in
L(`p, c0).

Our techniques are somewhat similar to those used in [20]. However, instead
of using independent sequences of 3-valued, symmetric random variables spanning
Rosenthal spaces, here we are going to rely on matrices with the Restricted Isometry
Property (RIP for short) to generate ideals. Their appearance in this problem was
somewhat of a surprise to us. In fact, we shall prove considerably more by showing
that the distributive lattice of closed ideals of L(`p, c0) has a rich structure (see
Theorem 2 below). From Theorem A it is a short step to extend the results of
Sirotkin and Wallis as follows.

Theorem B. For all 1 < p < ∞ there are continuum many closed ideals in
L(`p, `∞) and L(`1, `p).

As before, we will present more precise statements about the lattice of closed
ideals for these spaces. We do not know if L(`1, c0) and L(`1, `∞) have continuum
many closed ideals. Thus, in these cases the best known result is the aforementioned
theorem of Sirotkin and Wallis [19] that shows the existence of an ω1-chain of closed
ideals.

The paper is organized as follows. Section 2 begins with definitions, notations
and the introduction of RIP vectors. We then present the main results about ideals
in L(`p, c0). In Section 3 we present a proof of Theorem B. In the final section we
first explain the method of Sirotkin and Wallis and how it differs from ours. We
then prove some further results of interest about the ideal structure in L(`p, c0).
These explain why the techniques of [19] cannot work here. We conclude with
further remarks and open problems.

To conclude this introduction, we mention two pieces of notation used throughout
the paper. Firstly, we denote by X ∼= Y if the Banach spaces X and Y are
isometrically isomorphic, whereasX ∼ Y indicates that they are merely isomorphic.
Secondly, the action of a functional f ∈ X∗ on a vector x ∈ X will be written
as 〈x, f〉. Our convention is that the vector always appears on the left and the
functional on the right.

2. Closed ideals in L(`p, c0)

Given Banach spaces X and Y , we denote by L(X,Y ) the space of all operators
from X to Y . By an operator we shall always mean a bounded linear map. When
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X = Y we write L(X) instead of L(X,X). When X is formally a subset of Y ,
we write IX,Y for the formal inclusion map X → Y provided this is bounded.
We shall sometimes write I instead of IX,Y when X and Y are clear from the
context. Assume now that X =

(⊕∞
n=1Xn

)
`p

for some 1 6 p < ∞ and that

either Y =
(⊕∞

n=1 Yn
)
`q

for some p 6 q 6 ∞ or Y =
(⊕∞

n=1 Yn
)

c0
. Then,

given a uniformly bounded sequence of operators Tn : Xn → Yn, n ∈ N, we write
T = diag(Tn)n∈N for the diagonal operator T : X → Y defined by (xn) 7→ (Tnxn).

By an (operator) ideal of L(X,Y ) we mean a subspace J of L(X,Y ) such that
ATB ∈ J for all A ∈ L(Y ), T ∈ J and B ∈ L(X). A closed (operator) ideal is an
ideal that is closed in the operator norm. Note that the closure of an ideal is a closed
ideal. We shall denote by H(X,Y ) the set of all closed ideals of L(X,Y ). Note that
H(X,Y ) is a distributive lattice under inclusion: the meet and join operations are
given by

I ∧ J = I ∩ J , I ∨ J = I + J for I,J ∈ H(X,Y ) .

We next recall some standard operator ideals. We denote by K(X,Y ), FS(X,Y ),
and S(X,Y ) the closed ideals of, respectively, compact, finitely strictly singular,
and strictly singular operators from X to Y . Recall that T ∈ L(X,Y ) is finitely
strictly singular if for all ε > 0 there exists n ∈ N such that for every subspace
E ⊂ X of dimension at least n, there is a vector x ∈ E with ‖Tx‖ < ε‖x‖. We say
T is strictly singular if no restriction of T to an infinite-dimensional subspace of X
is an isomorphism. It is clear that K(X,Y ) ⊂ FS(X,Y ) ⊂ S(X,Y ). When X = Y
these ideals become K(X) ⊂ FS(X) ⊂ S(X). We shall also sometimes write K,
FS and S when X and Y are clear from the context. Recall that if X = `p,
1 6 p < ∞, and either Y = `q, p < q < ∞, or Y = c0, then L(X,Y ) = S(X,Y )
and L(Y,X) = K(Y,X).

We next introduce notation for closed ideals generated by a fixed operator. Let
T : W → Z be a bounded linear map. For any pair (X,Y ) of Banach spaces we
denote by J T (X,Y ) the closed ideal of L(X,Y ) generated by T . Thus,

J T (X,Y ) = span{ATB : A ∈ L(Z, Y ), B ∈ L(X,W )}

is the closed linear span of operators factoring through T . As usual, we write
J T (X) instead of J T (X,Y ) when X = Y . We shall also write J T instead of
J T (X,Y ) or J T (X) when X and Y are clear from the context.

We now begin our study of closed ideals in L(`p, c0) where 1 6 p <∞ is fixed for
the rest of this section. As mentioned in the Introduction, we know of the following
ideals:

{0} ( K ( J I`p,c0 ⊂ FS ( S = L(`p, c0) .

To see that FS is a proper ideal, fix for each n ∈ N an embedding Tn : `np →
`Mn
∞ for a sufficiently large Mn ∈ N satisfying, say, ‖Tnx‖ 6 ‖x‖ 6 2‖Tnx‖ for

all x ∈ `np . Then the diagonal operator diag(Tn)n∈N from `p ∼=
(⊕

n∈N `
n
p

)
`p

to

c0
∼=
(⊕

n∈N `
Mn
∞
)

c0
is clearly not finitely strictly singular. As noted in [22], the

results of [20] extend without much difficulty to show that in the range 1 < p < 2,
there is a chain of closed ideals order-isomorphic to R between J I`p,c0 and FS.
However, for 2 6 p < ∞ it was not even known if there are any other non-trivial,
proper closed ideals besides K and FS. We remedy this situation with our main
result, Theorem 2 below. The main ingredient will be certain RIP vectors which
we introduce next.

Fix δ ∈ (0, 1) and positive integers k < n 6 N . We say that the n ×N matrix
A satisfies the Restricted Isometry Property (RIP) of order k with error δ if for all
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x ∈ RN with at most k non-zero entries the following holds:

(1− δ)‖x‖`N2 6 ‖Ax‖`n2 6 (1 + δ)‖x‖`N2 .

Candès and Tao [5] introduced this property and established the important rôle
it plays in Compressed Sensing. Briefly, such matrices allow recovery of sparse
data from few measurements. Candès and Tao also established the existence of
matrices with the RIP: roughly speaking, they proved that a random n×N matrix
with Gaussian entries satisfies RIP with overwhelming probability. In particular,
and this is what we will use below, for any δ ∈ (0, 1) and k ∈ N, there exists a

constant c = c(δ, k) > 0 such that for all n,N ∈ N satisfying logN
n < c there exists

an n × N matrix with the RIP of order k and error δ. Before continuing, let us
mention that the RIP phenomenon has also been fundamental in asymptotic finite-
dimensional Banach space theory. Indeed, all the tools necessary for constructing
RIP matrices were already available in the 1970s and 1980s, for example, in Kashin’s
decomposition of `2n1 into two n-dimensional Euclidean sections [11], and in the well
known Johnson–Lindenstrauss lemma concerning certain Lipschitz mappings of a
finite set in Euclidean space onto a space of dimension logarithmic in the size of
the set [10]. We refer the reader to the article of Baraniuk, Davenport, DeVore and
Waking [1] where they discuss these connections and provide a simple proof of the
RIP for random matrices whose entries satisfy certain concentration inequalities
(this includes matrices with independent Gaussian or Rademacher entries as well
as others). The book of Foucart and Rauhut [8] also discusses these topics in detail
as well as many other aspects of the mathematics of Compressed Sensing.

The following statement is a straightforward consequence of the above discussion.
There exists a sequence u1 < v1 < u2 < v2 < . . . of positive integers such that
setting

(1) sn =

{
(2un)p/2 · np if 2 6 p <∞
2un · n2 if 1 6 p 6 2

the following properties hold:

(2) un > 19n3 · (6n+ 1)u1+u2+···+un−1 ,

(3) vn > 9n3 · sn ,

and there exist unit vectors
(
g

(n)
i

)vn
i=1

in `un2 (the normalized columns of an RIP

matrix) such that for every J ⊂ {1, 2, . . . , vn} with |J | 6 (sn−1 + 1)∨ 19n2 we have

(4)
1

2

∑
i∈J
|ai|2 6

∥∥∥∑
i∈J

aig
(n)
i

∥∥∥2

6 2
∑
i∈J
|ai|2 for all (ai)i∈J ⊂ R ,

and

(5)
∑
i∈J
|〈x, g(n)

i 〉|
2 6 2‖x‖2 for all x ∈ `un2 .

We next define, for each n ∈ N, operators Tn : `un2 → `vn∞ by x 7→
(
〈x, g(n)

i 〉
)vn
i=1

.

Note that ‖Tn‖ = 1, and hence we may use these maps to define certain diagonal
operators. Set U =

(⊕∞
n=1 `

un
2

)
`p

and V =
(⊕∞

n=1 `
vn
∞
)

c0
. For an infinite set

M ⊂ N define TM : U → V by (xn) 7→ (yn), where yn = Tn(xn) if n ∈ M and
yn = 0 otherwise. The following is the main result of this section.

Theorem 1. Let M,N be infinite subsets of N.

(i) If M \N is infinite, then TM /∈ J TN (U, V ).

(ii) If N \M is finite, then J TN (U, V ) ⊂ J TM (U, V ).



CLOSED IDEALS OF OPERATORS BETWEEN THE CLASSICAL SEQUENCE SPACES 5

As a corollary we will deduce that the lattice of closed ideals of L(U, V ) has a
rich structure in the following precise sense. Define B to be the Boolean algebra
obtained as the quotient of the power set PN of N by the equivalence relation ∼
defined by M ∼ N if and only if M 4 N is finite. By Theorem 1(ii) above, the
ideal J TM (U, V ) depends only on the equivalence class [M ] of the infinite set M .
Thus, we have a well-defined map

ϕ : B → H(U, V )

[M ] 7→

{
J TM if M is infinite,

J IU,V if M is finite.

Here IU,V is the formal inclusion of U into V . Note that U can indeed be viewed
as a subset of V in the following way. Every element of U =

(⊕∞
n=1 `

un
2

)
`p

can

be thought of as a sequence (xi)
∞
i=1 with

∑∞
n=1

(∑tn
i=tn−1+1|xi|2

)p/2
< ∞, where

tn = u1+· · ·+un for all n ∈ N. On the other hand, V is nothing else but c0 with the
particular choice

(⊕∞
n=1 `

vn
∞
)

c0
of blocking of its unit vector basis. It will also be

helpful to think of IU,V as a diagonal operator: write V = c0 as
(⊕∞

n=1 `
un
∞
)

c0
using

a different blocking of the unit vector basis. Then IU,V : U → V is the diagonal
operator whose nth diagonal entry is the formal identity `un2 → `un∞ . At the very
end of this section we will comment on the choice of ϕ([M ]) for M finite.

Theorem 2. The map ϕ defined above is injective, monotone and preserves the
join operation. In particular, L(U, V ) has continuum many closed ideals between
J IU,V and FS.

Since V = c0 and for 1 < p <∞ the space U is isomorphic to `p by Pe lczyński’s
Decomposition Theorem (see e.g., [6, Theorem 6.24]), our first main result, Theo-
rem A, stated in the Introduction follows immediately.

We begin with the proof of Theorem 1. Of course, part (ii) is trivial since if
N \M is finite, then a finite-rank perturbation of TN factors through TM . Let us
now explain why part (i) has a chance of being true. An obvious way for (i) to
fail would be the existence of an injection m 7→ nm from M into N such that Tm
factors through Tnm for all m ∈M . Indeed, then TM would factor through TN and
we would immediately obtain TM ∈ J TN . However, for m ∈ M \ N and for any
n ∈ N , it is hard for Tm to factor through Tn. Indeed, Tm preserves the norm of

the RIP vectors g
(m)
i , 1 6 i 6 vm. When m > n, the number vm of these vectors is

massive compared to the dimension un of the domain of Tn, and an easy pigeonhole
argument will show that one cannot have a map `um2 → `un2 preserving the norm of
so many RIP vectors. The case m < n is slightly more complicated. In this case,
Tm factoring through Tn says something about the action of Tn on a subspace of
small dimension (small compared to the dimension un of the domain of Tn). It will
then follow from (4) and (5) that the restriction of Tn to this small-dimensional
subspace, and hence Tm, factors through the formal identity I : `r2 → `r∞, where
r 6 sm, and in particular r is still much smaller than the number vm of RIP vectors
whose norm Tm preserves. Another simple pigeonhole argument will again show
that the formal identity I cannot preserve the norm of so many RIP vectors, but
this time it will be crucial that I is mapping into an `∞-space.

We begin the proof of our main theorem with a beefed up version of the claim
above that the restriction of Tn to a small-dimensional subspace factors through
the formal identity `r2 → `r∞ with a suitable bound on r.
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Lemma 3. Fix m ∈ N, a subset N of {n ∈ N : n > m} and an operator

B : `um2 →
(⊕
n∈N

`un2

)
`p

with ‖B‖ 6 1. Let D :
(⊕

n∈N `
un
2

)
`p
→
(⊕

n∈N `
vn
∞
)

c0
be the diagonal opera-

tor diag(Tn)n∈N . Then there exist subsets Jn ⊂ {1, 2, . . . , vn}, n ∈ N , such that∑
n∈N |Jn| 6 sm and there is an approximate factorization

`um2

B -
(⊕
n∈N

`un2

)
`p

D-
(⊕
n∈N

`vn∞

)
c0

(⊕
n∈N

`Jn2

)
`p

P

?
I -

(⊕
n∈N

`Jn∞

)
c0

R6

with ‖DB −RIP‖ 6 1
m , where I is the formal inclusion, ‖P‖ 6 2 and ‖R‖ 6 1.

Proof. Let us first observe that we need only consider the case 2 6 p <∞. This is
because the case 1 6 p 6 2 reduces to the case p = 2. Indeed, if 1 6 p 6 2,
then D :

(⊕
n∈N `

un
2

)
`p
→
(⊕

n∈N `
vn
∞
)

c0
factors through D viewed as a map

from
(⊕

n∈N `
un
2

)
`2
→
(⊕

n∈N `
vn
∞
)

c0
via the formal identity

(⊕
n∈N `

un
2

)
`p
→(⊕

n∈N `
un
2

)
`2

. The case p = 2 then provides the required approximate factor-

ization via the formal identity I : `r2 → `r∞ for some r 6 sm. This completes the
proof by taking Jn = {1, . . . , r} ⊂ {1, . . . , vn} for n = minN , and Jn′ = ∅ for all
n′ ∈ N \ {n}.

Let us now assume that 2 6 p <∞, and we may of course also take N 6= ∅. Set
t = sm + 1 and let H be a subset of {(n, j) : n ∈ N, 1 6 j 6 vn} of size t such that∥∥B∗g(n)

j

∥∥ > ∥∥B∗g(n′)
j′

∥∥ for all (n, j) ∈ H, (n′, j′) /∈ H .

Set J =
{

(n, j) ∈ H :
∥∥B∗g(n)

j

∥∥ > 1
m

}
. For each n ∈ N letting Hn = {j : (n, j) ∈

H} and Jn = {j : (n, j) ∈ J}, we obtain the following inequalities.

1
m2 |Jn| 6

∑
j∈Hn

∥∥B∗g(n)
j

∥∥2
=
∑
j∈Hn

um∑
i=1

∣∣〈B∗g(n)
j , ei

〉∣∣2

=

um∑
i=1

∑
j∈Hn

∣∣〈g(n)
j , Bei

〉∣∣2 6 2 ·
um∑
i=1

‖PnBei‖2

6 2 · u
p−2
p

m

(
um∑
i=1

‖PnBei‖p
)2/p

where (ei)
um
i=1 stands for the unit vector basis of `um2 and Pn denotes the canonical

projection of
(⊕

n′∈N `
un′
2

)
`p

onto `un2 . The inequality in the second line follows

from (5) and from |Hn| 6 |H| = t = sm + 1 6 sn−1 + 1. Finally, the last inequality
uses Hölder’s inequality. Raising the above to the power p/2 yields

|Jn| 6 |Jn|p/2 6 2p/2 · u
p−2
2

m ·mp ·
um∑
i=1

‖PnBei‖p .
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We next sum over n ∈ N to obtain∑
n∈N
|Jn| 6 2p/2 · u

p−2
2

m ·mp ·
um∑
i=1

‖Bei‖p 6 2p/2 · up/2m ·mp = sm ,

using the assumption that ‖B‖ 6 1. In particular, we have |J | =
∑
n∈N |Jn| 6

sm < |H|. It follows from the choice of H that
∥∥B∗g(n)

j

∥∥ < 1
m for all (n, j) /∈ J .

From this we immediately obtain the claimed approximate factorization of DB by

setting P (x) =
(〈
Bx, g

(n)
j

〉
j∈Jn

)
n∈N for x ∈ `um2 , and setting R equal the diagonal

operator whose nth diagonal entry for n ∈ N is the canonical embedding `Jn∞ → `vn∞
sending (xj)j∈Jn to (yj)

vn
j=1, where yj = xj for j ∈ Jn and yj = 0 otherwise. Note

that ‖P‖ 6 2 follows from (5) and from |Jn| 6 |J | 6 sm < sn−1 + 1. �

Before moving on to the proof of Theorem 1, we observe the following conse-
quence of Lemma 3 that will be needed in the proof of Theorem 2.

Corollary 4. For each infinite set M ⊂ N, the operator TM : U → V is finitely
strictly singular.

Proof. Fix an infinite set M ⊂ N and ε > 0. We need to find d ∈ N such that every
subspace E ⊂ U of dimension at least d contains a vector x with ‖TMx‖ < ε‖x‖.
Set q = max{2, p} and choose m ∈ N with m−1 + 2m−1/q < ε/2. Next choose a
very large d ∈ N so that every Banach space of dimension at least d−(u1 + · · ·+um)
has a subspace 2-isomorphic to `um2 . Such a d exists by Dvoretzky’s theorem and
depends only on m. We will show that this d works.

Let E be an arbitrary d-dimensional subspace of U . Denote by J the inclusion
map from E into U and by Q the canonical projection of U onto

(⊕m
i=1 `

ui
2

)
`p

.

Since the kernel of QJ has dimension at least d − (u1 + · · · + um), it contains a
subspace F that is 2-isomorphic to `um2 . Let B be the restriction of J to F . We
need to show that for some x ∈ F we have ‖TMBx‖ < ε‖x‖. It is clearly sufficient
to show that if N = {n ∈ M : n > m} and B is any operator from `um2 to(⊕

n∈N `
un
2

)
`p

with ‖B‖ 6 1, then for some x ∈ `um2 we have ‖DBx‖ < ε
2‖x‖,

where D = diag(Tn)n∈N . At this point we can apply Lemma 3 to obtain the
approximately commuting diagram

`um2

B -
(⊕
n∈N

`un2

)
`p

D-
(⊕
n∈N

`vn∞

)
c0

(⊕
n∈N

`Jn2

)
`p

P

?
I -

(⊕
n∈N

`Jn∞

)
c0

R6

with ‖DB −RIP‖ 6 1
m , where I is the formal inclusion, ‖P‖ 6 2 and ‖R‖ 6 1.

Now, if x is a non-zero vector in kerP , then ‖DBx‖ 6 1
m‖x‖ <

ε
2‖x‖, and

we are done. So we may assume that the image of P has dimension at least um,
and so at least m. A result of Milman [13] (see also [17, Lemma 3.4]) states that
every m-dimensional subspace of c0 contains a non-zero vector which has at least
m co-ordinates of largest magnitude. Thus, there exists such a non-zero vector y in
the image of P . It follows that ‖y‖ > ‖y‖`q > m1/q‖Iy‖. Choosing x ∈ `um2 with
Px = y we have

‖DBx‖ 6 1

m
‖x‖+ ‖RIPx‖ 6 1

m
‖x‖+ 2m−1/q‖x‖ < ε

2
‖x‖ ,

as required. �
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Proof of Theorem 1. As mentioned earlier, we only need to prove (i) as (ii) is trivial.
We shall construct a functional Φ in L(U, V )∗ that separates TM from J TN (U, V ).

For each m ∈ N and S ∈ L(U, V ) define

Φm(S) = 1
vm

vm∑
i=1

〈
Sg

(m)
i , e

(m)
i

〉
where (e

(m)
i )vmi=1 denotes the unit vector basis of `vm1 viewed in the obvious way as

elements of V ∗ ∼=
(⊕∞

n=1 `
vn
1

)
`1

. Clearly, Φm ∈ L(U, V )∗ with ‖Φm‖ 6 1 for all

m ∈ N, and Φm(TM ) = 1 for all m ∈M . We are going to show that

(6) lim
m→∞, m∈M\N

Φm(ATNB) = 0 for all A ∈ L(V ), B ∈ L(U) .

It then follows that if Φ is a weak∗-accumulation point of (Φm)m∈M\N in L(U, V )∗,

then Φ(TM ) = 1 and J TN (U, V ) ⊂ ker Φ. The proof of the theorem is then com-
plete.

To see (6), let us fix m ∈ M \ N and operators A ∈ L(V ) and B ∈ L(U). We
shall as we may assume that ‖A‖ 6 1 and ‖B‖ 6 1. We first observe that

(7)
∣∣Φm(ATNB)

∣∣ =
∣∣∣ 1
vm

vm∑
i=1

〈
TNBg

(m)
i , A∗e

(m)
i

〉∣∣∣ 6 1
vm

vm∑
i=1

∥∥TNBg(m)
i

∥∥ .
We then split the right-hand side of (7) into two sums as follows. Let n0 = min{n ∈
N : n > m}. Let B(1) be the restriction of B to `um2 followed by the canonical

projection of U onto
(⊕

n∈N,n<n0
`un2

)
`p

. Similarly, let B(2) be the restriction of

B to `um2 followed by the canonical projection of U onto
(⊕

n∈N,n>n0
`un2

)
`p

. We

also let D(1) = diag(Tn)n∈N,n<n0 and D(2) = diag(Tn)n∈N,n>n0 . Continuing (7),
we next obtain

(8)
∣∣Φm(ATNB)

∣∣ 6 1
vm

vm∑
i=1

∥∥D(1)B(1)g
(m)
i

∥∥+ 1
vm

vm∑
i=1

∥∥D(2)B(2)g
(m)
i

∥∥ .
We shall now estimate the two terms above separately. Beginning with the first
term, let us fix a 1

3m -net F in the unit ball of
(⊕

n∈N,n<n0
`un2

)
`p

. Note that the

dimension of this space is
∑
n∈N,n<n0

un 6 u1+u2+· · ·+um−1. By standard volume

estimate, we can find such an F with |F | 6 (6m+ 1)u1+···+um−1 by taking it to be

a maximal 1
3m -separated subset of the ball. Now, set H =

{
i :
∥∥B(1)g

(m)
i

∥∥ > 1
m

}
,

and assume for a contradiction that |H| > vm
m . Then by the pigeon-hole principle

we find x ∈ F and J ⊂ H such that |J | > vm
m|F | and

∥∥B(1)g
(m)
i − x

∥∥ 6 1
3m for all

i ∈ J . It follows from (2) that |J | > 19m2, and after replacing J with a smaller
set, we may in fact assume that |J | = 19m2. It then follows by (4) that∥∥∥∑

i∈J
g

(m)
i

∥∥∥2

6 2|J | .

On the other hand, the choice of J yields∥∥∥∑
i∈J

B(1)g
(m)
i

∥∥∥ > |J | · 2

3m
− |J | · 1

3m
=
|J |
3m

.

The last two inequalities and the fact that ‖B(1)‖ 6 ‖B‖ 6 1 imply that |J | 6 18m2

which is a contradiction. This shows that |H| 6 vm
m , and hence

(9) 1
vm

vm∑
i=1

∥∥D(1)B(1)g
(m)
i

∥∥ 6 |H|
vm

+
1

m
6

2

m
.
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To estimate the second term on the right-hand side of (8), we shall first apply
Lemma 3 with B,D,N replaced by B(2), D(2) and {n ∈ N : n > n0}, respectively,
to obtain Jn ⊂ {1, . . . , vn}, n ∈ N,n > n0, with

∑
|Jn| 6 sm, and an almost

commuting diagram

`um2

B(2)
-
( ⊕
n∈N,n>n0

`un2

)
`p

D(2)
-
( ⊕
n∈N,n>n0

`vn∞

)
c0

( ⊕
n∈N,n>n0

`Jn2

)
`p

P

?
I -

( ⊕
n∈N,n>n0

`Jn∞

)
c0

R6

with ‖D(2)B(2) −RIP‖ 6 1
m , ‖P‖ 6 2 and ‖R‖ 6 1. From this we obtain

(10) 1
vm

vm∑
i=1

∥∥D(2)B(2)g
(m)
i

∥∥ 6 1
vm

vm∑
i=1

∥∥IPg(m)
i

∥∥+
1

m
.

Let us setH =
{
i :
∥∥IPg(m)

i

∥∥ > 1
m

}
, and assume for a contradiction that |H| > vm

m .

For each i ∈ H, there exist n ∈ N,n > n0, and j ∈ Jn with
∣∣[Pg(m)

i

]
n,j

∣∣ > 1
m ,

where [y]n,j denotes the (n, j)-coordinate of an element y of
(⊕

n∈N,n>n0
`Jn2

)
`p

.

Hence by pigeon-hole principle, there exist n ∈ N,n > n0, j ∈ Jn and J ⊂ H with

|J | > |H|∑
|Jn| such that

∣∣[Pg(m)
i

]
n,j

∣∣ > 1
m for all i ∈ J . It follows from (3) that

|J | > vm
m·sm > 9m2. After replacing J by a smaller set, we may in fact assume that

|J | = 9m2. Hence by (4) we have∥∥∥∑
i∈J

εig
(m)
i

∥∥∥2

6 2|J |

where εi is the sign of
[
Pg

(m)
i

]
n,j

for each i ∈ J . On the other hand, by the choice

of J and since ‖P‖ 6 2, we get

2
∥∥∥∑
i∈J

εig
(m)
i

∥∥∥ > ∥∥∥∑
i∈J

εiPg
(m)
i

∥∥∥ >∑
i∈J

εi
[
Pg

(m)
i

]
n,j
> |J | · 1

m
.

The last two inequalities yield |J | 6 8m2 which is a contradiction. Hence |H| 6 vm
m

and

1
vm

vm∑
i=1

∥∥IPg(m)
i

∥∥ 6 2|H|
vm

+
1

m
6

3

m
.

This inequality together with (10) yields the upper bound

1
vm

vm∑
i=1

∥∥D(2)B(2)g
(m)
i

∥∥ 6 4

m
.

Combining this with (9) and (8), we finally obtain∣∣Φm(ATNB)
∣∣ 6 6

m

for all m ∈M \N . This completes the proof of (6). �

We conclude this section with a proof of Theorem 2 which begins with a lemma.

Lemma 5. For each m ∈ N, the formal identity I : `m2 → `m∞ factors through Tn
for all sufficiently large n ∈ N via operators that are uniformly bounded.
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Proof. Let us fix m ∈ N. Assume that n ∈ N satisfies

m ·
√
m(m− 1)

M − 1
<

1

2
, where M = (sn−1 + 1) ∨ 19n2 .

Then by (5) we have
M∑

i,j=1

∣∣〈g(n)
i , g

(n)
j

〉∣∣2 6 2M ,

and hence
M∑

i,j=1
i 6=j

∣∣〈g(n)
i , g

(n)
j

〉∣∣2 6M .

Next, let S be a random (with respect to the uniform distribution) subset of

{1, 2, . . . ,M} of size m. Then for i 6= j we have P(i, j ∈ S) =
(
M−2
m−2

)
/
(
M
m

)
, and thus

E
∑
i,j∈S
i 6=j

∣∣〈g(n)
i , g

(n)
j

〉∣∣2 6M · (M − 2

m− 2

)
·
(
M

m

)−1

=
m(m− 1)

M − 1
.

Thus for some set S the above inequality holds. After relabelling, we may assume

that S = {1, 2, . . . ,m}. Let us now define B : `m2 → `un2 by Bei = g
(n)
i for 1 6

i 6 m, where (ei) is the standard basis of Rm. By (4) we have ‖B‖ 6 2. Let
P : `vn∞ → `m∞ be the projection onto the first m co-ordinates. Finally, for each

1 6 i 6 m set ui =
(
〈g(n)
i , g

(n)
j 〉

)m
j=1

. Observe that if
∥∥∑m

i=1 λiei
∥∥
`m∞

= 1, then∥∥∥ m∑
i=1

λi(ei − ui)
∥∥∥
`m∞

6
m∑
i=1

‖ei − ui‖`m∞ =

m∑
i=1

max
16j6m
j 6=i

∣∣〈g(n)
i , g

(n)
j

〉∣∣

6 m ·
√
m(m− 1)

M − 1
<

1

2
.

It follows that there is a well-defined linear map A : `m∞ → `m∞ with Aui = ei for
all i. Moreover, the above calculation shows that ‖A‖ 6 2. We complete the proof
by observing the factorization I = APTnB. �

Proof of Theorem 2. It follows from Theorem 1 that if [M ] < [N ] for infinite subsets
M and N of N, then J TM ( J TN . Next, recall that IU,V can be viewed as the
diagonal operator whose mth diagonal entry is the formal identity I : `um2 → `um∞ . It
then follows from Lemma 5 that IU,V factors through TM for every infinite subset
M of N. Thus, ϕ([M ]) < ϕ([N ]) whenever M is finite and N is infinite. This
completes the proof that ϕ is strictly monotonic.

To show that ϕ preserves the join operation, it is of course sufficient to consider
incomparable elements of B. In particular, it is enough to show that J TM ∨J TN =
J TM∪N for infinite sets M and N . The left-to-right inclusion is clear, since both
TM and TN trivially factor through TM∪N . Conversely, TM\N factors through TM ,

and so TM∪N = TM\N + TN ∈ J TM +J TN ⊂ J TM ∨J TN . This shows the reverse
inclusion, as required.

It follows from the properties established so far that ϕ is injective. Finally,
Corollary 4 completes the proof of the theorem. �

Remark. Some comments about the choice of ϕ([M ]), M finite, are in order. We
have V = c0 and, when 1 < p < ∞, we have U ∼ `p. However, the formal
inclusion I`p,c0 is different from IU,V . Since I`p,c0 factors through every non-compact

operator in L(`p, c0), we have J I`p,c0 ⊂ J IU,V . When 2 6 p < ∞ then IU,V
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factors through I`p,c0 via the formal inclusion from U =
(⊕∞

n=1 `
un
2

)
`p

to `p =(⊕∞
n=1 `

un
p

)
`p

. It follows that in this case the ideals J I`p,c0 and J IU,V are identical.

However, for 1 < p < 2, we have J I`p,c0 ( J IU,V , and hence our choice of ϕ([∅])
yields a stronger statement. We do not know whether J IU,V =

⋂
M⊂N, |M |=∞ J TM ,

or indeed whether ϕ preserves the meet operation, i.e., whether ϕ is a lattice
isomorphism. To see that IU,V /∈ J I`p,c0 for 1 < p < 2, define for each m ∈ N a
functional Ψm on L(U, V ) by setting

Ψm(S) = 1
um

um∑
i=1

〈
Se

(m)
i , e

(m)∗
i

〉
(S ∈ L(U, V ))

where (e
(m)
i )umi=1 is the unit vector basis of `um2 in U =

(⊕∞
n=1 `

un
2

)
`p

, and (e
(m)∗
i )umi=1

is the unit vector basis of `um1 in V ∗ =
(⊕∞

n=1 `
un
1

)
`1

. It is easy to verify that

Ψm ∈ L(U, V )∗ with ‖Ψm‖ 6 1 and that Ψm(IU,V ) = 1 for all m ∈ N. On the other
hand, given A ∈ L(c0, V ) and B ∈ L(U, `p) with ‖A‖ 6 1 and ‖B‖ 6 1, we have∣∣Ψm(AI`p,c0B)

∣∣ 6 1
um

um∑
i=1

∥∥I`p,c0Bme(m)
i

∥∥
where Bm : `um2 → `p is the restriction of B to `um2 . An application of [20, Lemma 4]
now gives Ψm(AI`p,c0B)→ 0 as m→∞. Thus, letting Ψ be a weak∗-accumulation

point of (Ψm) in L(U, V )∗, we obtain Ψ(IU,V ) = 1 and J I`p,c0 ⊂ ker Ψ.

3. Closed ideals in L(`p, `∞) and L(`1, `p)

In this section we prove results analogous to Theorems 1 and 2 for L(`p, `∞)
and L(`1, `p) in the range 1 < p < ∞. In both cases a fairly straightforward
modification of the proof of Theorem 1 will suffice. We shall also present a duality
argument that establishes some, but not all, of the results for L(`1, `p) directly from
the results for L(`p, `∞). Such a duality argument was used by Sirotkin and Wallis
in [19], and we shall say more about that in the next section.

Fix 1 6 p < ∞ and set U =
(⊕∞

n=1 `
un
2

)
`p

, V =
(⊕∞

n=1 `
vn
∞
)

c0
and W =(⊕∞

n=1 `
vn
∞
)
`∞

, where (un) and (vn) are sequences satisfying (1)–(5) on page 4.

Similar to the previous section, we will prove our first result for L(U,W ), which of
course is the same as working with L(`p, `∞) when 1 < p < ∞. We shall also use
the operators TM : U → V defined in the previous section. Finally, we will denote
by J the formal inclusion IV,W of V into W .

Theorem 6. Let M and N be infinite subsets of N.

(i) If M \N is infinite, then J ◦ TM /∈ J TN (U,W ).

(ii) If N \M is finite, then J TN (U,W ) ⊂ J TM (U,W ).

It follows that the map ϕ : B→ H(U,W ) given by

ϕ([M ]) =

{
J TM (U,W ) if M is infinite, and

J IU,V (U,W ) if M is finite,

is well defined, injective, monotone and preserves the join operation. In particular,
L(U,W ) has continuum many closed ideals between J IU,V and FS.

Proof. We follow the proof of Theorem 1. For m ∈ N and S ∈ L(U,W ) we define

Ψm(S) = 1
vm

vm∑
i=1

〈
Sg

(m)
i , f

(m)
i

〉
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where f
(m)
i ∈ W ∗ are chosen so that ‖f (m)

i ‖ = 1 and J∗f
(m)
i = e

(m)
i for each i.

(In other words, f
(m)
i is a Hahn–Banach extension of e

(m)
i to W .) We then have

Ψm ∈ L(U,W )∗ with ‖Ψm‖ = 1 for all m ∈ N, and Ψm(J ◦TM ) = Φm(TM ) = 1 for
all m ∈M . The proof of (i) will then be complete if we show that

(11) lim
m→∞, m∈M\N

Ψm(ATNB) = 0 for all A ∈ L(V,W ), B ∈ L(U) .

To see this, fix operators A ∈ L(V,W ) and B ∈ L(U), and assume without loss of
generality that ‖A‖ 6 1 and ‖B‖ 6 1. We then have∣∣Ψm(ATNB)

∣∣ 6 1
vm

vm∑
i=1

∥∥TNBg(m)
i

∥∥ .
This is the analogue of inequality (7) from Theorem 1. Since the right-hand sides
of these inequalities are identical, from here onwards we can simply follow the proof
of Theorem 1. This then completes the proof of part (i).

Part (ii) is again trivial, whereas the rest of the theorem is proved exactly as
Theorem 2. �

Remark. The same argument works for any Banach space W that contains a copy
of c0 with J being an isomorphic embedding of V into W . We could also replace
the ideals J TM with J J◦TM , and J IU,V with J IU,W .

We now turn to the duality argument. Given Banach spaces X and Y , for a
subset J of L(Y ∗, X∗) we let J∗ = {T ∈ L(X,Y ) : T ∗ ∈ J }. The following result
is straightforward to verify.

Proposition 7. Let X and Y be Banach spaces. The map J 7→ J∗ is a monotone
map from H(Y ∗, X∗) to H(X,Y ) that preserves the meet operation. Moreover, if
I \ J contains a dual operator for some closed ideals I and J in L(Y ∗, X∗), then
I∗ 6⊂ J∗.

Note that U is the dual space of U∗, where U∗ =
(⊕∞

n=1 `
un
2

)
c0

when p = 1, and

U∗ =
(⊕∞

n=1 `
un
2

)
`q

when 1 < p < ∞ and q is the conjugate index to p. In the

next result we shall write W∗ for
(⊕∞

n=1 `
vn
1

)
`1
∼= `1, being the predual of W . Of

course, we have W∗ ∼= V ∗, and the formal inclusion J = IV,W is nothing else but
the canonical embedding of V into its bidual V ∗∗ ∼= W .

Theorem 8. Let ϕ be the map defined in Theorem 6. Define ψ : B → H(W∗, U∗)
by ψ([M ]) = ϕ([M ])∗ for every M ⊂ N. Then ψ is injective and monotone. In
particular, L(W∗, U∗) contains continuum many closed ideals.

Proof. Fix an infinite set M ⊂ N. Note that J ◦ TM is the diagonal operator
diag(Sn)n∈N : U → W where Sn = Tn when n ∈ M , and Sn = 0 otherwise. Define
SM to be the diagonal operator diag(S∗n)n∈N : W∗ → U∗. It is then clear that
S∗M = J ◦ TM . In particular, J ◦ TM is a dual operator. The theorem now follows
from Theorem 6 and Proposition 7. �

We conclude this section by proving a slightly stronger result for L(W∗, U∗) (and
hence for L(`1, `q) for 1 < q < ∞) by following the proof of Theorem 1. In this
context it will be more appropriate to write V ∗ in place of W∗. We shall use the
notation established in the proof of Theorem 8 and denote by SM : V ∗ → U∗ the
diagonal operator with S∗M = J ◦ TM for an infinite subset M of N.

Theorem 9. Let M and N be infinite subsets of N.

(i) If M \N is infinite, then SM /∈ J SN (V ∗, U∗).

(ii) If N \M is finite, then J SN (V ∗, U∗) ⊂ J SM (V ∗, U∗).
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It follows that the map ψ : B→ H(V ∗, U∗) given by

ψ([M ]) =

{
J SM (V ∗, U∗) if M is infinite, and

J IV ∗,U∗ (V ∗, U∗) if M is finite,

is well defined, injective, monotone and preserves the join operation. In particular,
L(V ∗, U∗) has continuum many closed ideals between J IV ∗,U∗ and FS.

Proof. For m ∈ N consider Φm ∈ L(U, V )∗ as defined at the start of the proof of
Theorem 1. We also let

Ψm(S) = 1
vm

vm∑
i=1

〈
Se

(m)
i , g

(m)
i

〉
for S ∈ L(V ∗, U∗) ,

where (e
(m)
i )vmi=1 is the unit vector basis of `vm1 as in the proof of Theorem 1. It is

clear that Ψm ∈ L(V ∗, U∗)
∗ with ‖Ψm‖ = 1. Since〈

SMe
(m)
i , g

(m)
i

〉
=
〈
e

(m)
i , S∗Mg

(m)
i

〉
=
〈
e

(m)
i , J ◦ TMg(m)

i

〉
=
〈
TMg

(m)
i , e

(m)
i

〉
,

it follows that Ψm(SM ) = Φm(TM ) = 1 for all m ∈M . As in the proof of Theorem 1
we will now show that

lim
m→∞, m∈M\N

Ψm(ASNB) = 0 for all A ∈ L(U∗), B ∈ L(V ∗) .

This will then complete the proof of part (i) of Theorem 9. To see the above, we
follow closely the proof of Theorem 1. We fix m ∈M \N and assume that ‖A‖ 6 1
and ‖B‖ 6 1. We then observe the following analogue of (7).∣∣Ψm(ASNB)

∣∣ 6 1
vm

vm∑
i=1

∥∥S∗NA∗g(m)
i

∥∥ = 1
vm

vm∑
i=1

∥∥TNA∗g(m)
i

∥∥ .
Here A∗ is an element of L(U), and hence this upper bound on |Ψm(ASNB)| is
of the same form as the right-hand side of (7). Thus, the rest of the proof of
Theorem 1 can now be used to complete the proof of (i).

The rest of Theorem 9 is proved exactly as Theorem 2 using the following ob-
servations. Firstly, dualizing Lemma 5 shows that IV ∗,U∗ factors through SN for
every infinite set N ⊂ N. Secondly, if 1 < q < ∞, then U∗ ∼ `q, and if q = ∞ (or
indeed, if 2 6 q 6∞), then SN factors through `2 ∼=

(⊕∞
n=1 `

un
2

)
`2

via SN viewed

as a map to V ∗ → `2 followed by the formal inclusion of `2 into U∗. In either case,
we deduce that SN is finitely strictly singular from Theorem 10 below. �

Theorem 10. Let 1 < q < ∞. Then every operator `1 → `q is finitely strictly
singular. More generally, given Banach spaces X and Y , if X does not contain
uniformly complemented and uniformly isomorphic copies of `n2 , n ∈ N, and Y has
non-trivial type, then L(X,Y ) = FS(X,Y ).

Proof. We begin by recalling some results from the local theory of Banach spaces.
A Banach space Z is locally π-euclidean if there is a constant λ and a function
k 7→ N(k) such that every subspace of Z of dimension N(k) contains a further
subspace 2-isomorphic to `k2 and λ-complemented in Z. This notion was introduced
by Pe lczyński and Rosenthal in [14].

Having non-trival type is equivalent to not containing `n1 uniformly (a result
of Maurey and Pisier [12]), which in turn is equivalent to K-convexity (due to
Pisier [16, Theorem 2.1]). Figiel and Tomczak-Jaegermann proved that a K-convex
Banach space is locally π-euclidean [7]. Thus in particular the space Y in our
theorem is locally π-euclidean.

Let us now assume that T ∈ L(X,Y ) is not finitely strictly singular. Then
there is an ε > 0 and a sequence of finite-dimensional subspaces En of X such
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that ‖Tx‖ > ε‖x‖ for all n ∈ N and for all x ∈ En, and such that dimEn → ∞.
Since Y is locally π-euclidean, we may assume after passing to a subsequence and
replacing the En by suitable subspaces that T (En) is 2-isomorphic to `n2 and λ-
complemented in Y for some constant λ. It follows that En is C-isomorphic to `n2
and C-complemented in X, where C = max{2, λ} · ‖T‖/ε. This contradicts the
assumption on X. �

4. Further results, remarks and open problems

The main result of this section, Theorem 12 below, is concerned with the struc-
ture of “large” ideals in L(`p, c0) for 1 < p < ∞. By “large” ideal we mean ideals
containing operators that are not finitely strictly singular. To place Theorem 12
into context, we shall begin with a brief sketch of the proof of Sirotkin and Wal-
lis [19] that L(`1, `q), 1 < q 6 ∞, L(`1, c0), and L(`p, `∞), 1 6 p < ∞, contain
uncountable many closed ideals. We shall not define all the terms used and refer
the reader to [19] and to the work of Beanland and Freeman [2] whose results play
an important rôle.

Fix 1 6 p < ∞ and let q be the conjugate index of p. For an ordinal α,
0 < α < ω1, let Tα be the p-convexified Tsirelson space of order α. Recall that Tα
is a reflexive sequence space not containing any copy of `r, 1 6 r < ∞, or c0. Its
unit vector basis (ti) is dominated by the unit vector basis (ei) of `p, and moreover,
(ti)i∈F uniformly dominates (ei)i∈F for every Schreier-α set F .

Let us denote by Jα the formal embedding of `p into Tα, which is the dual
operator of the formal embedding Iα of T ∗α into `q when 1 < p < ∞, and into
c0 when p = 1. Fix a quotient map Qα : `1 → T ∗α and set Sα = Iα ◦ Qα. Note
that S∗α = Q∗α ◦ Jα. Since Q∗α is an isomorphic embedding, it follows that S∗α is
an isomorphism on (ei)i∈F for every Schreier-α set F . We shall now consider the
closed ideals Jα = J S∗α(`p, `∞).

Beanland and Freeman [2] introduced an ordinal-index which for a strictly singu-
lar operator T from `p into an arbitrary Banach space quantifies the failure of T to
preserve a copy of `p. Using methods of Descriptive Set Theory, they proved that
for such an operator T , there is a countable ordinal α such that T fails to preserve
`p specifically on Schreier-α sets. This means that for every bounded sequence (xn)
in `p and for any ε > 0 there is a Schreier-α set F and scalars (ai)i∈F such that∥∥∥∑

i∈F
aiTxi

∥∥∥ < ε
∥∥∥∑
i∈F

aixi

∥∥∥ .
Let us temporarily say that such an operator T is α-singular. Although operators
with this property do not form an ideal, every operator in the closed ideal generated
by them is αω-singular.

Let us now return to the closed ideals Jα of L(`p, `∞). Since Tα contains no
copy of `p, it follows from the result of Beanland–Freeman that S∗α is β-singular
for some countable ordinal β. Set γ = βω. Since S∗γ is an isomorphism on (ei)i∈F
for every Schreier-γ set F , it follows that S∗γ is not γ-singular, and hence S∗γ /∈ Jα.
This shows that there is an ω1-sequence of countable ordinals α for which the
closed ideals Jα are distinct, and moreover they are distingished by dual operators.
Hence by Proposition 7, the corresponding closed ideals

(
Jα
)
∗ of L(`1, `q) when

1 < p < ∞, and of L(`1, c0) when p = 1, are also distinct. We remark that the
closed ideals constructed by Sirotkin and Wallis are slightly different, but the proof
here is essentially a streamlined version of their proof.

Let us emphasize the key aspects of the above argument. Firstly, all operators in
Jα are γ-singular for a sufficiently large γ. On the other hand, Jγ is not γ-singular,
as it is isomorphic on (ei)i∈F for every Schreier-γ set F . Since Q∗γ is an isomorphic
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embedding, this property is inherited by S∗γ which therefore does not belong to
Jα. Since no operator in L(`p, c0) can be uniformly isomorphic on (ei)i∈F even for
the class of Schreier-1 sets F , this argument cannot be used to construct infinitely
many closed ideals in L(`p, c0) for 1 < p < ∞. Moreover, one cannot use duality
via Proposition 7 either, as the Sα are not dual operators. Recall that Wallis [22]
observed that the method of [20] extends to yield continuum many closed ideals in
L(`p, c0) for 1 < p < 2, but this approach does not seem to go beyond this range
of values for p either. The main result of this section shows that there is another
obstruction. Theorem 12 below shows that at least for p = 2 there are no proper
closed ideals in L(`p, c0) containing an operator that is not finitely strictly singular.
In other words, there are no proper large ideals. We begin with a simple lemma.

Lemma 11. Let E be a finite-dimensional Banach space and let J : E → `m∞ be
an isomorphic embedding with ‖x‖ 6 ‖Jx‖ for all x ∈ E. Then every operator
T : E → `n∞ factors through J : more precisely, there is an operator A : `m∞ → `n∞
such that T = A ◦ J and ‖A‖ 6 ‖T‖.

Proof. We may assume that ‖T‖ 6 1. Then there are functionals fi, gj ∈ E∗ with
‖fi‖ 6 ‖J‖ and ‖gj‖ 6 1 such that

Jx =
(
〈x, fi〉

)m
i=1

and Tx =
(
〈x, gj〉

)n
j=1

for all x ∈ E .

Since ‖x‖ 6 ‖Jx‖ for all x ∈ E, it follows from the geometric Hahn–Banach theorem
that the unit ball of E∗ is contained in conv{fi : 1 6 i 6 m}. In particular, each
gj can be expressed as a convex combination gj =

∑m
i=1 ti,jfi. Define A : `m∞ → `n∞

by

A
(
(yi)

m
i=1

)
=
( m∑
i=1

ti,jyi

)n
j=1

.

It is straightforward to verify that ‖A‖ 6 1 and T = A ◦ J . �

From now on we fix 1 < p < ∞ and two diagonal operators K and L defined
as follows. For each n ∈ N fix embeddings Kn : `n2 → `kn∞ and Ln : `np → `mn∞
satisfying ‖x‖ 6 ‖Knx‖ 6 2‖x‖ for all x ∈ `n2 , and ‖x‖ 6 ‖Lnx‖ 6 2‖x‖ for
all x ∈ `np , and then set K = diag(Kn)n∈N :

(⊕∞
n=1 `

n
2

)
`p
→
(⊕∞

n=1 `
kn
∞
)

c0
and

L = diag(Ln)n∈N :
(⊕∞

n=1 `
n
p

)
`p
→
(⊕∞

n=1 `
mn
∞
)

c0
. Observe that by Lemma 11,

the closed ideals JK(X,Y ) and J L(X,Y ) are independent of the particular choice
of embeddings Kn and Ln for any pair (X,Y ) of Banach spaces.

Theorem 12. Let 1 < p <∞ and let K,L be defined as above. Then

(i) J L(`p, c0) = L(`p, c0), and

(ii) if T ∈ L(`p, c0) \ FS(`p, c0), then JK ⊂ J T .

It follows that if J is a non-trivial, proper closed ideal of L(`p, c0), then either

J = K or J I`p,c0 ⊂ J ⊂ FS or JK ⊂ J . In particular, for p = 2 we have the
following: if J is a non-trivial, proper closed ideal of L(`2, c0), then either J = K
or J I`2,c0 ⊂ J ⊂ FS.

Proof. Let T ∈ L(`p, c0). It is well known that T can be arbitrarily well approx-
imated by the sum of two block-diagonal operators. So to show (i), we may as
well assume that T = diag(Tn) :

(⊕∞
n=1 `

n
p

)
`p
→
(⊕∞

n=1 `
rn
∞
)

c0
for some integers

rn and maps Tn : `np → `rn∞ . By Lemma 11, there are operators An : `mn∞ → `rn∞ such
that ‖An‖ 6 ‖Tn‖ 6 ‖T‖ and Tn = AnLn. Setting A = diag(An)n∈N, we obtain
T = A ◦ L ∈ J L, as required.

Let us next consider T ∈ L(`p, c0) that is not finitely strictly singular. By
standard basis arguments, after perturbing T by a compact (or even a nuclear)
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operator, we may assume that the columns of T with respect to the canonical bases
of `p and c0 are finite, and hence T maps finitely supported vectors to finitely
supported vectors. Since T /∈ FS(`p, c0), it follows that there exists ε > 0 and
finite-dimensional subspaces En of `p with dimEn → ∞ such that ‖Tx‖ > ε‖x‖
for all x ∈ En and for all n ∈ N. After perturbing the En and replacing them
by suitable subspaces, we may assume that for some p1 < q1 < p2 < q2 < . . . ,
we have En and T (En) are both contained in span{ei : pn 6 i 6 qn} for all
n ∈ N. After passing to further subspaces of En, we may also assume that each
En is 2-isomorphic to `n2 by Dvoretzky’s theorem. Let us now fix for each n ∈ N
an isomorphism Jn : `n2 → En satisfying 1

ε‖x‖ 6 ‖Jnx‖ 6
2
ε‖x‖ for all x ∈ `n2 ,

and define Tn to be the restriction of T to En viewed as a map Tn : En → `rn∞
∼=

span{ei : pn 6 i 6 qn}. Since ‖x‖ 6 ‖TnJnx‖ for all n ∈ N and x ∈ `n2 , it
follows from Lemma 11 that the Kn factor uniformly through TnJn. Hence K
factors through diag(TnJn) :

(⊕∞
n=1 `

n
2

)
`p
→
(⊕∞

n=1 `
rn
∞
)

c0
, and thus through T ,

as required.
The rest of the theorem now follows. �

We conclude with some open problems. As already mentioned in the Introduc-
tion, our method does not work for operators from `1 to c0. Sirotkin and Wallis [19]
have shown that L(`1, c0) contains uncountably many closed ideals, but the follow-
ing remains open.

Problem 13. Does L(`1, c0) contain continuum many closed ideals?

There are various other questions that arise naturally in this paper but remain
unanswered. We summarize these in the next two problems.

Problem 14. Does the map ϕ in Theorem 2, 6 or 9 preserve the meet operation?

A positive answer would in particular imply that for disjoint infinite subsets M
and N of N we have J TM ∩ J TN = J IU,V , and thus the definition of ϕ([∅]) is
optimal.

Problem 15. Does the inclusion FS ⊂ JK hold in Theorem 12?

This would show that J ⊂ FS ⊂ JK ⊂ J ′ for all “small” ideals J and for all
large ideals J ′, and would thus shed further light on the lattice H(`p, c0).

Let us now turn attention to the remaining pairs of classical sequence spaces
that we have hitherto not mentioned.

Problem 16. What can be said about the lattice of closed ideals in L(`∞, `p),
1 6 p 6∞, and in L(`∞, c0)? In particular, are they infinite?

We note that the structure of H(c0, `∞) on the other hand is well understood
and is as simple as possible.

Theorem 17. The compact operators are the only non-trivial proper closed ideal
in L(c0, `∞).

Proof. We need to show that if T : c0 → `∞ is a non-compact operator, then it
generates L(c0, `∞). By standard basis arguments, we find a block subspace Y in
c0 spanned by a block sequence (xn) of the unit vector basis (en) such that T is an
isomorphism on Y . Let Z = T (Y ), and let S be an arbitrary operator in L(c0, `∞).
Define B : c0 → c0 by Ben = xn. Since (Txn) is equivalent to (en), we can define
A1 : Z → `∞ by A1(Txn) = Sen. Finally, since `∞ is injective, A1 extends to an
operator A : `∞ → `∞. Note that S = ATB, and hence the proof is complete. �
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Finally, it follows from the work of Bourgain, Rosenthal and Schechtman that
Lp[0, 1] for 1 < p < ∞, p 6= 2, has up to isomorphism uncountably many com-
plemented subspaces [3]. It follows easily that L(Lp[0, 1]) has uncountably many
closed ideals. (In fact, although it is not known whether Lp[0, 1] has continuum
many complemented subspaces, it follows from [20] that L(Lp[0, 1]) has contin-
uum many closed ideals. This is because Lp[0, 1] contains a complemented copy of
`p⊕ `2). It is a well known unsolved conjecture that every complemented subspace
of L1[0, 1] is isomorphic either to `1 or to L1[0, 1]. The following related question
is therefore of interest.

Problem 18. Does L(L1[0, 1]) contain infinitely many closed ideals?
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associated with them, Bul. Akad. Štiince RSS Moldoven. 1960 (1960), no. 10 (76), 51–70

(Russian, with Moldavian summary). MR0218920 (36 #2004)
[10] William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a

Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982),

Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189–206, DOI
10.1090/conm/026/737400. MR737400
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