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Abstract. We prove that every separable uniformly convex Banach space X embeds into a
Banach space Z which has the property that all bounded linear operators on Z are compact
perturbations of scalar multiples of the identity. More generally, the result holds for all separable
reflexive Banach spaces of Szlenk index ω0.

1. Introduction

What is now known as the “scalar plus compact” problem asked if there existed an infinite
dimensional Banach space with the property that every bounded linear operator on the space is
equal to a scalar times the identity plus a compact operator. This was listed by Lindenstrauss
as Question 1 in his 1976 list of open problems in Banach space theory [15], though his problem
was well known before then. Part of the reason for the interest in the “scalar plus compact”
problem, is due to the fact that every compact operator has an invariant subspace [5]. Thus
a Banach space with the property that every bounded linear operator on the space is equal to
a scalar times the identity plus a compact operator, also has the property that every bounded
operator has an invariant subspace.

Recently, the first and third author solved the “scalar plus compact problem” by creating
an infinite dimensional Banach space with the property that every bounded linear operator
on the space is equal to a scalar times the identity plus a compact operator [2]. The space
was constructed by modifying a procedure of Bourgain and Delbaen [6] which produces a L∞
Banach space with dual isomorphic to `1. Recently as well, the second, fourth, and sixth named
authors [10] modified the Bourgain-Delbaen procedure in a different manner to prove that if
X is a Banach space with separable dual, then X embeds into a L∞ Banach space with a
shrinking basis with dual isomorphic to `1. The main goal of this paper is to combine the two
modifications of the Bourgain-Delbaen procedure to prove the following theorem.
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Theorem A. Let X be a separable uniformly convex Banach space. Then X embeds in a
Banach space Z, whose dual space is isomorphic to `1, and which has the property that all
T ∈ L(Z), i.e. all bounded linear operators T on Z, are of the form T = λId + K, where Id
denotes the identity, λ is a scalar and K is a compact operator on Z.

In particular, Theorem A shows that the subspace structure of a Banach space with the
“scalar plus compact” property can be quite general and can contain unconditional basic se-
quences. This is in stark contrast to [2], where the constructed space was hereditarily indecom-
posable.

The space Z, constructed in the proof of Theorem A, will have some additional interesting
properties. As in [2], we have that,

i) Z is somewhat reflexive, i.e., every infinite dimensional subspace of Z contains an infinite
dimensional reflexive subspace.

ii) L(Z) is amenable as a Banach algebra.
iii) L(Z) is separable.
iv) Every T ∈ L(Z) admits a non-trivial invariant subspace.
v) An operator T : X → X lifts to an operator T : Z → Z such that T |X = T if and only

if T is equal to scalar times the identity operator on X plus a compact operator.

Many of these properties are significant in their own right, and merit further discussion. In
particular, as the invariant subspace problem for Hilbert spaces is one of the most important
open problems in operator theory, we note that Theorem A implies the related result that a
separable Hilbert space (or more generally Lp[0, 1] for 1 < p <∞) embeds into a Banach space
with separable dual such that every bounded operator has an invariant subspace.

In the 50’s and 60’s, Grothendiek and Lindenstrauss worked on determining the lifting prop-
erties of compact operators. One result of Lindestrauss in particular [16] gives that because Z
is a isomorphic predual of `1, it has the injective property for compact operators. Thus, for
every compact operator K : X → X, there exists a compact operator K : Z → Z such that
K|X = K. Thus an operator T : X → X lifts to an operator T : Z → Z such that T |X = T if
and only if T is equal to scalar times the identity operator on X plus a compact operator.

In his 1972 memoir [14], B.E. Johnson set up the theory of cohomology of Banach algebras,
and introduced the notion of an amenable Banach algebra. A Banach algebra A is called
amenable if every bounded derivation D from A to a dual Banach A-bimodule X∗ is inner.
That is, if a bounded linear operator D : A → X∗ satisfies D(ab) = a · (Db) + (Da) · b, for
each a, b ∈ A, then there exists x∗ ∈ X∗ such that Da = a · x∗ − x∗ · a. The name amenable
was appropriately chosen for this property, as the group algebra of a locally compact group
is amenable as a Banach algebra if and only if the group is amenable[14]. Johnson posed
the question of whether the algebra L(X) can ever be amenable for an infinite-dimensional
Banach space X. Whether L(X) is amenable remains an important open problem for a number
of concrete Banach spaces, including `p for p 6= 1, 2 [8]. It is shown in [13] that the algebra
of compact operators K(X) is amenable whenever X is a Lp-space when 1 ≤ p ≤ ∞. Thus
in Theorem A, we have that K(Z) is amenable. By Proposition 2.8.58(i) of [7], the algebra
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obtained by adjoining an identity to a non-unital amenable Banach algebra is again amenable.
Thus the algebra of all bounded operators on Z is amenable.

Theorem A also implies that every separable uniformly convex Banach space embeds into an
indecomposable Banach space with separable dual. It is thus worth noting that the first and
fifth named authors have recently proved that every separable reflexive Banach space embeds
into a separable reflexive indecomposable Banach space [3].

The proof of Theorem A relies heavily on the Bourgain-Delbaen construction [6], the frame-
work and the notation of which are reviewed in section 2. In Theorem 2.9 we give a general
criteria that will ultimately yield that the space Z, constructed in section 4 where Theorem A
is proved, satisfies the “scalar plus compact” property.

Theorem A will actually hold for any reflexive Banach space with Szlenk index ω0. The
theorem relies on X being reflexive as we will show that for any operator T on Z, there exists
a scalar λ such that T − λId factors through X. Thus, T − λId is weakly compact as X is
reflexive, and is hence norm compact as Z∗ is isomorphic to `1 which has the Schur property.
Our construction uses the mixed Tsirelson space given in [2], and we rely on block sequences
in X being dominated by the unit vector basis for the mixed Tsirelson space. Requiring that
X have Szlenk index ω0 guarantees this property. There is work in progress by the authors,
which will yield further results concerning spaces with very few operators. This is based on a
different and very involved approach using higher complexity saturation methods, among other
techniques[1].

2. The generalized Bourgain-Delbaen construction

In this section we review the general framework and notation of the construction of Bourgain-
Delbaen spaces. We follow, with slight changes and some notational differences, the presentation
in [2] and start by introducing Bourgain-Delbaen sets.

Definition 2.1. (Bourgain-Delbaen-sets)
A sequence of finite disjoint sets (∆n : n∈N) is called a Sequence of Bourgain - Delbaen Sets

if it satisfies the following recursive conditions:
∆1 is any finite set, and assuming that for some n ∈ N the sets ∆1, ∆2,. . ., ∆n have been

defined, we let Γn =
⋃n
j=1 ∆j. We denote the unit vector basis of `1(Γn) by (e∗γ : γ ∈Γn), and

consider the spaces `1(Γj) and `1(Γn \ Γj), j < n, to be, in the natural way, embedded into
`1(Γn).

For n ≥ 1, ∆n+1 will then be the union of two sets ∆
(0)
n+1 and ∆

(1)
n+1, where ∆

(0)
n+1 and ∆

(1)
n+1

satisfy the following conditions.

The set ∆
(0)
n+1 is finite and

∆
(0)
n+1 ⊂

{
(n+ 1, β, b∗) : β∈ [0, 1], b∗∈B`1(Γn)

}
(1)

The set ∆
(1)
n+1 is finite and

(2) ∆
(1)
n+1 ⊂

{
(n+ 1, α, k, ξ, β, b∗) : α, β∈ [0, 1], k∈{1, 2, . . . n− 1}, ξ∈∆k, b

∗∈B`1(Γn\Γk)

}
.
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If (∆n) is a sequence of Bourgain-Delbaen sets we put Γ =
⋃∞
j=1 ∆j. For n∈N, and γ ∈∆n

we call n the rank of γ and denote it by rk(γ). If γ ∈∆
(0)
n , we say that γ is of type 0, and, in

the case that γ ∈∆
(1)
n , we say that γ is of type 1. In both cases we call β the weight of γ and

denote it by wt(γ). In our application of the Bourgain-Delbaen construction to prove Theorem

A, we will always have α = 1 for γ = (n, α, k, ξ, β, b∗)∈∆
(1)
n , and hence we will then suppress

the α and use the notation γ = (n, k, ξ, β, b∗) ∈∆
(1)
n . In [10], there was a special case when

α 6= 1, and we discuss later how the construction in [10] can be recoded to avoid this.

Given a sequence of Bourgain-Delbaen sets ∆ = (∆n : n∈N) we will always assume the sets

∆
(0)
n , ∆

(1)
n , Γn and Γ have been defined satisfying the conditions above. We consider the spaces

`∞(
⋃
j∈A ∆j) and `1

(⋃
j∈A ∆j

)
, for A ⊂ N, to be naturally embedded into `∞(Γ) and `1(Γ),

respectively.
We denote by c00(Γ) the real vector space of families x = (x(γ) : γ ∈Γ) ⊂ R for which the

support, supp(x) = {γ ∈Γ : x(γ) 6= 0}, is finite. The unit vector basis of c00(Γ) is denoted by
(eγ : γ ∈ Γ), or, if we think of c00 to be as being subspace of a dual space, such as `1(Γ), by
(e∗γ : γ∈Γ). If Γ = N we write c00 instead of c00(N).

Definition 2.2. (Bourgain-Delbaen families of functionals)
Assume that (∆n : n∈N) is a sequence of Bourgain-Delbaen sets. By induction on n we will

define for all γ∈∆n, elements c∗γ∈`1(Γn−1) and d∗γ∈`1(Γn), with d∗γ = e∗γ − c∗γ.
For γ∈∆1 we define c∗γ = 0, and thus d∗γ = e∗γ.
Assume that for some n∈N we have defined (c∗γ : γ ∈Γn), with c∗γ ∈ `1(Γj−1), if j ≤ n and

rk(γ) = j. It follows therefore that (d∗γ : γ ∈Γn) = (e∗γ − c∗γ : γ ∈Γn) is a basis for `1(Γn) and
thus for k ≤ n we have the projections:

(3) P ∗(k,n] : `1(Γn)→ `1(Γn),
∑
γ∈Γn

aγd
∗
γ →

∑
γ∈Γn\Γk

aγd
∗
γ.

For γ∈∆n+1 we then define

(4) c∗γ =

{
βb∗ if γ = (n+ 1, β, b∗)∈∆

(0)
n+1,

αe∗ξ + βP ∗(k,n](b
∗) if γ = (n+ 1, α, k, ξ, β, b∗)∈∆

(1)
n+1.

We call (c∗γ : γ∈Γ), the Bourgain-Delbaen family of functionals associated to (∆n : n∈N). We
will in this case consider the projections P ∗(k,n] to be defined on all of c00(Γ), which is possible

since (d∗γ : γ ∈ Γ) forms a vector basis of c00(Γ) and, (as we will observe later) under further
assumptions, a Schauder basis of `1(Γ).

Remarks. The reason for using ∗ in the notation for P ∗(k,m] is that later we will observe that
the P ∗(k,m] are the adjoints of some coordinate projections P(k,m] on a space Y with a finite

dimensional decomposition (FDD) F = (Fj) onto ⊕j∈(k,m]Fj.

The next proposition is based on results in [2] and [6]. It follows from a more general theorem
in [10].
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Proposition 2.3. [10, Proposition 2.4] Assume that (∆n : n∈N) is a sequence of Bourgain-
Delbaen sets and let (c∗γ : γ∈Γ) be the corresponding family of associated functionals. For n∈N
put F ∗n = span(d∗γ : γ ∈∆n). If for every γ = (n + 1, α, k, ξ, β, b∗) ∈ Γ of type 1 it holds that

β ≤ 1
4
, then (F ∗n)∞n=1 is an FDD for `1(Γ) whose decomposition constant M is not larger than

2.

Remarks. Let Γ be linearly ordered as (γj : j∈N) in such a way that rk(γi) ≤ rk(γj), if i ≤ j.
Under the assumption β≤ 1

4
stated in Proposition 2.3, (d∗γj) is actually a Schauder basis of `1

[2]. But for our purpose the FDD is the more natural coordinate system.

Assume we are given a sequence of Bourgain-Delbaen sets (∆n : n ∈ N), which satisfy the
assumptions of Proposition 2.3, and let M be the decomposition constant of the FDD (F ∗n) in
`1(Γ). We now define the Bourgain-Delbaen space associated to (∆n : n∈N). For a finite or
cofinite set A⊂N we let P ∗A be the projection onto the subspace ⊕j∈AF ∗j of `1(Γ) given by

P ∗A : `1(Γ)→ `1(Γ),
∑
γ∈Γ

aγd
∗
γ 7→

∑
γ∈A

aγd
∗
γ.

If A = {m}, for some m ∈ N, we write P ∗m instead of P ∗{m}. For m ∈ N we denote by Rm

the restriction operator from `1(Γ) onto `1(Γm) (in terms of the basis (e∗γ)) as well the usual
restriction operator from `∞(Γ) onto `∞(Γm). Since Rm ◦ P ∗[1,m] is a projection from `1(Γ) onto

`1(Γm), for m∈N, it follows that the map

Jm : `∞(Γm)→ `∞(Γ), x 7→ P ∗∗[1,m] ◦R∗m(x),

is an isomorphic embedding (P ∗∗[1,m] is the adjoint of P ∗[1,m] and, thus, defined on `∞(Γ)). Since

R∗m is the natural embedding of `∞(Γm) into `∞(Γ) it follows for all m∈N that

Rm ◦ Jm(x) = x, for x ∈ `∞(Γm), thus Jm is an extension operator,(5)

Jn ◦Rn ◦ Jm(x) = Jm(x), whenever m ≤ n and x ∈ `∞(Γm),(6)

and by Proposition 2.3,

‖Jm‖ ≤M.(7)

Hence the spaces Ym = Jm(`∞(Γm)), m∈N, are finite-dimensional nested subspaces of `∞(Γ)
which (via Jm) are M -isomorphic images of `∞(Γm). Therefore

(8) Y =
⋃
m∈N

Yn
`∞

is a L∞,M space. We call Y the Bourgain-Delbaen space associated to (∆n).
Define for m∈N

P[1,m] : Y → Y, x 7→ Jm ◦Rm(x).
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We claim that P[1,m] coincides with the restriction of the adjoint P ∗∗[1,m] of P ∗[1,m] to the space Y.

Indeed, if n∈N, with n ≥ m, and x = Jn(x̃)∈Yn, and b∗ ∈ `1(Γ) we have that

〈P ∗∗[1,m](x), b∗〉 = 〈x, P ∗[1,m](b
∗)〉

= 〈Rm(x), Rm ◦ P ∗[1,m](b
∗)〉 (since P ∗[1,m](b

∗) ∈ span(e∗γ : γ ∈ Γm))

= 〈P ∗∗[1,m] ◦R∗m ◦Rm(x), b∗〉 = 〈P[1,m](x), b∗〉.
Thus our claim follows since

⋃
n Yn is dense in Y.

We therefore deduce that Y has an FDD (Fm), with Fm = (P[1,m] − P[1,m−1])(Y ) and Ym =
⊕mj=1Fj ∼M `∞(Γm) for m ∈ N. Moreover, denoting by PA the coordinate projections from
Y onto ⊕j∈AFj, for all finite or cofinite sets A ⊂ N, it follows that PA is the adjoint of P ∗A
restricted to Y , and P ∗A is the adjoint of PA restricted to the subspace of Y ∗ generated by the
F ∗n ’s.

Denote by ‖ · ‖∗ the dual norm of Y ∗ restricted to the subspace ⊕∞j=1F
∗
j = `1. We claim that

for all b∗ ∈ `1(Γ)

(9) ‖b∗‖∗ ≤ ‖b∗‖`1 ≤M‖b∗‖∗.
The first inequality follows from the fact that ‖e∗γ‖∗ ≤ ‖e∗γ‖`∗∞ = 1, for γ ∈ Γ, and the triangle
inequality. To show the second inequality we let b∗ ∈ `1(Γn) for some n ∈ N and choose
x ∈ S`∞(Γn) so that 〈b∗, x〉 = ‖b∗‖`1 . Then it follows from (7) and (5)

‖b∗‖∗ ≥
〈
b∗,

1

M
Jn(x)

〉
=

1

M
‖b‖`1 .

We now recall some notation introduced in [2]. Assume that we are given a Bourgain-Delaben
sequence (∆n), the corresponding Bourgain-Delbaen family (c∗γ : γ ∈ Γ), and the resulting
Bourgain-Delbaen space Y , which admits a decomposition constant M < ∞. As above we
denote its FDD by (Fn). For the remainder of the section, we restrict ourselves to considering

sets Γ such that α = 1 for all γ = (n, α, k, ξ, β, b∗) ∈ ∆
(1)
n . We suppress the α, and use the

notation γ = (n, k, ξ, β, b∗). For n∈N and γ ∈ ∆n, we write

e∗γ = d∗γ + c∗γ = d∗γ +

{
βb∗ if γ = (n, β, b∗) ∈ ∆

(0)
n ,

e∗ξ+βP
∗
(k,∞)(b

∗) if γ = (n, k, ξ, β, b∗) ∈ ∆
(1)
n .

In the second case, we can write e∗ξ = d∗ξ + c∗ξ , and, then we can insert for c∗ξ its definition. We
can proceed this way and eventually arrive (after finitely many steps) to a functional of type
0. By an easy induction argument we therefore deduce the following

Proposition 2.4. For all n∈N and γ ∈ ∆n, there are a ∈ N, β1, β2, . . . βa ∈ [0, 1], numbers
0 = p0 < p1 < p2 − 1 < p2 < p3 − 1 < p3, . . . < pa−1 < pa − 1 < pa = n in N0, vectors
b∗j ∈ B`1(Γ) ∩ span(e∗η : η ∈ Γpj−1 \ Γpj−1

), and (ξj) ⊂ Γn, with ξj ∈ ∆pj , for j = 1, 2 . . . a, and
ξa = γ, so that

(10) e∗γ =
a∑
j=1

d∗ξj + βjP
∗
(pj−1,∞)(b

∗
j) =

a∑
j=1

d∗ξj + βjP
∗
(pj−1,pj)

(b∗j).
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We call the representation in (10) the evaluation analysis of γ and define for γ ∈ Γ, age(γ) = a
to be the age of γ. We define the cuts of γ to be cuts(γ) = {p1, p2, . . . pa}. The sequence of
triples, (pj, b

∗
j , ξj)1≤j≤a is called the analysis of γ.

Remark. From now on, we assume that there is a striclty increasing sequence of natural
numbers (mj)

∞
j=1 such that for each γ ∈ Γ, we have m−1

j = β1 = β2 = . . . = βa for some j ∈ N.
Furthermore, we assume that b∗j ∈ ⊕i∈(pj−1,pj)F

∗
i and hence P ∗(pj−1,pj)

(b∗j) = b∗j for all 1 ≤ j ≤ a.

Thus the evaluation analysis of γ simplifies to the following equation:

(11) e∗γ =
a∑
i=1

d∗ξi +m−1
j

a∑
i=1

b∗i

Definition 2.5. If x ∈ Y , we define the support of x to be supp(x) = {n ∈ N : Pn(x) 6= 0}.
We say that a sequence (xn) ⊂ X is a block sequence with respect to (Fi) if max supp(x1) <
min supp(x2) ≤ max supp(x2) < min supp(x3) < ... If in addition, max supp(xn)+1 < max supp(xn+1)
for all n then we say that (xn) ⊂ X is a skipped block sequence.

If x ∈ ⊕ni=1Fi, then there exists a unique y ∈ `∞(Γn) such that x = Jn(y). We define the
range of x to be the smallest interval rg(x) = [k,m] such that y(γ) = 0 for all γ 6∈ Γm \ Γk−1.

Definition 2.6. Let (xn) be a block sequence in Y , (mj)
∞
j=1 be a strictly increasing sequence

of natural numbers, and C > 0. We say (xn) is a C-Rapidly Increasing Sequence, or C-RIS, if
for k∈N

‖xk‖ ≤ C and |e∗γ(xk)| ≤ Cwt(γ) if k ≥ 2 and γ ∈ Γ with wt(γ) ≥ m−1
max rg(xk−1).(12)

We say that (xn) is an RIS, if (xn) is a C-RIS for some C > 0.

It is easy to see that Rapidly Increasing Sequences satisfy the following permanence proper-
ties.

Proposition 2.7. Let (mj)
∞
j=1 be a strictly increasing sequence of natural numbers, and C>0.

a) Every subsequence of a C-RIS is a C-RIS.
b) If (xn) and (yn) are C-RIS’s and α, β > 0, then there is a subsequence (kn) of N so that

(αxkn + βykn)n∈N, is a C(α + β)-RIS.

Proposition 2.8. [2, Proposition 5.11] Let T : Y → W be a bounded linear operator, W being
a Banach space. Then ‖T (xk)‖ → 0 whenever (xk) is a bounded block sequence if and only if
‖T (xk)‖ → 0 whenever (xk) is an RIS.

We finish this section by stating a criterion which implies that all operators T : Y → Y are
compact perturbations of a multiplication operator. Most of the proof is based on the proof of
a similar statement in [2].

Theorem 2.9. Let (∆n) be a sequence of Bourgain-Delbaen sets, with finite decomposition
constant M . Assume furthermore that the FDD (Fn) of Y , which we defined above, is shrinking.
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Let X be a reflexive subspace of Y and assume that T : Y → Y is a bounded linear operator
satisfying for every C > 0 and C-RIS (xn) the condition that:

(13) lim inf
n→∞

dist(T (xn), [xn] +X) = 0.

Then there is a λ ∈ R and a compact operator K on Y so that T = λId+K.

Proof. Assume that (xn) is a C-RIS which is seminormalized in the quotient space Y/X. By
our assumption we can choose a subsequence (x′n) of (xn) and a bounded sequence (λn) ⊂ R
so that limn→∞ ‖T (x′n) − λnx′n‖Y/X = 0. After passing again to a subsequence we can assume
that λ = limn→∞ λn exists and, thus, that limn→∞ ‖T (x′n)− λx′n‖Y/X = 0.

Secondly, we claim that there is a universal λ ∈ R so that for all C > 0 every C-RIS (xn),
which is seminormalized in Y/X, has a subsequence (x′n) so that limn→∞ ‖T (x′n)−λx′n‖Y/X = 0.
Indeed, assume that (xn) and (yn) are such sequences, and assume that λ and µ are in R so
that for some subsequences (x′n) of (xn) and (y′n) of (yn), limn→∞ ‖T (x′n) − λx′n‖Y/X = 0 and
limn→∞ ‖T (y′n) − µy′n‖Y/X = 0. For each n ∈ N, choose f ∗n ∈ S(Y/X)∗ such that f ∗n(Q(x′n)) =
‖x′n‖Y/X , where Q : Y → Y/X is the quotient map. The sequence (y′n) is weakly null, thus after
passing to a subsequence if necessary, we may assume that |f ∗n(Q(y′n))| < 2−n for all n ∈ N.
Hence,

(14) lim inf
n→∞

‖αx′n + βy′n‖Y/X ≥ |Q∗f ∗n(αx′n + βy′n)| ≥ |α| inf
n∈N
‖x′n‖Y/X for every α, β ∈ R

Using Proposition 2.7 we can, after passing to subsequences, if necessary, assume that (x′n+y′n)
is a (2C)-RIS. After passing to subsequences again, we assume that there is a ρ ∈ R so that
limn→∞ ‖T (x′n + y′n)− ρ(x′n + y′n)‖Y/X = 0.

This implies that limn→∞ ‖λx′n + µy′n− ρ(x′n + y′n)‖Y/X = 0. Hence 0 = limn→∞ ‖(λ− ρ)x′n +
(µ − ρ)y′n‖Y/X ≥ (λ − ρ) infn∈N ‖x′n‖. Thus, λ = ρ, as (x′n) is seminormalized in Y/X. Thus
limn→∞ ‖µy′n − ρy′n‖Y/X = 0, and hence µ = ρ as (y′n) is seminormalized in Y/X.

We claim now that S = T −λId is a weakly compact operator, which, finishes our proof since
by Schauder’s theorem S is (weakly) compact if and only S∗ is (weakly) compact and since by
Schur’s theorem all weakly compact operators on `1 are norm compact.

First note, using Propositions 2.8, it follows that the operator S̃ : Y → Y/X, x 7→ Q ◦ S(x),
where Q : Y → Y/X is the quotient mapping, is norm compact. Hence for a given ε > 0
there is an N = Nε so that dist(S(x), 2‖S‖BX) < ε, whenever x ∈ ⊕∞j=N+1Fj ∩ BY . Thus

S(BY ) ⊂ Wε + εBY , where Wε = 2MS
(
B⊕Nj=1Fj

)
+ 4M‖S‖BX . We thus showed that for every

ε > 0 there is a relatively weakly compact set Wε ⊂ Y so that S(BY ) ⊂ Wε+εBY . We therefore
deduce our claim from a well known characterization of weakly compactness (c.f. [9]). �

3. Mixed Tsirelson spaces

Our method for constructing the space Z in Theorem A combines the technique of embedding
a Banach space into a Bourgain-Delbaen space given in [10] with the technique of producing a
Bourgain-Delbaen space with very few operators given in [2]. All existing methods of creating
hereditarily indecomposable spaces or spaces with very few operators, involve the use of mixed
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Tsirlson spaces, the first example of such being given in [20]. We will use the same mixed
Tsirelson space for constructing Z as was used in [2]. We recall the notation and terminology
from [4]. Let (`j)j∈N be a sequence of positive integers and let (θj)j∈N be a sequence of real
numbers with 0 < θj < 1. We define W [(A`j , θj)j∈N] to be the smallest set W of c00 with the
following properties:

(1) ±e∗k ∈ W for all k ∈ N, where such functionals are said to be of type 0;
(2) whenever f ∗1 , ..., f

∗
n ∈ W are successive vectors and n ≤ `j,

f ∗ = θj

n∑
i=1

f ∗i ∈ W, where f ∗ is said to be of type 1 with weight θj.

It is possible for a given f ∗ to have more than one weight, but this shall not pose a problem.
The reader who is familiar with [4] should note that our W is there denoted by W ′

0.
The mixed Tsirelson space T [(A`j , θj)j∈N] is defined to be the completion of c00 with respect

to the norm
‖x‖ = sup{f ∗(x) | f ∗ ∈ W [(A`j , θj)j∈N]}

The norm ‖ · ‖ on T [(A`j , θj)j∈N] satisfies the following recursive relationship.

‖x‖ = ‖x‖∞ ∨ sup
j∈N,E1<...<E`j

θj

`j∑
i=1

‖xχEi‖ for all x ∈ T [(A`j , θj)j∈N]

As in [2] we will work with two sequences (mj) and (nj) in N satisfying the following prop-
erties.

(15)
√
n1/2 > m1 > 16, mj+1 ≥ m2

j , nj+1 ≥ (16nj)
log2(mj+1) ≥ m2

j+1(4nj)
log2mj+1 .

A simple way to achieve this is to have (mj, nj)j∈N be a subsequence of (22j , 22j
2+1

)j>4. The
sequences (mj) and (nj) will be used to construct the space Z in a way somewhat analogous
to the construction of T [(A3nj ,m

−1
j )j∈N]. In the sequel, we will need upper norm estimates for

certain vectors in Z, and this will be achieved through the following upper norm estimates for
certain vectors in T [(A3nj ,m

−1
j )j∈N].

Proposition 3.1. [2, Proposition 2.5] If j0 ∈ N and f ∗ ∈ W [(A3nj ,m
−1
j )j∈N] is an element of

weight m−1
h , then

|f ∗(n−1
j0

nj0∑
`=1

e`)| ≤
{

2m−1
h m−1

j0
if h < j0

m−1
h if h ≥ j0

In particular, the norm of n−1
j0

∑nj0
`=1 e` in W [(A3nj ,m

−1
j )j∈N] is exactly m−1

j0
. If we make the

additional assumption that f ∗ ∈ W [(A3nj ,m
−1
j )j 6=j0 then

|f ∗(n−1
j0

nj0∑
`=1

e`)| ≤
{

2m−1
h m−2

j0
if h < j0

m−1
h if h > j0

In particular, the norm of n−1
j0

∑nj0
`=1 e` in W [(A3nj ,m

−1
j )j 6=j0 ] is at most m−2

j0
.
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4. Construction of the space Z

Our goal in this section is to prove the following theorem.

Theorem 4.1. Let X be a separable reflexive Banach space with Szlenk index ω0. Then X
embeds in a Banach space Z, whose dual space is isomorphic to `1, and which has the property
that all operators T on Z are of the form T = λId + K, where Id denotes the identity, λ is a
scalar and K is a compact operator on Z.

Every separable uniformly convex infinite dimensional Banach space is both reflexive and has
Szlenk index ω0. That every uniformly convex Banach space is reflexive is well known. That
every uniformly convex Banach space has Szlenk index ω0 actually follows immediately from
the definition of the Szlenk index [21]. The Szlenk index of a Banach space X is essentially the
suppremum over ε > 0 of how long it takes to remove all the points from BX∗ by successively
removing all relatively w∗ open subsets of BX∗ with diameter at most ε. If X is uniformly
convex, then X can be renormed so that BX∗ is also uniformly convex. Removing all relatively
w∗ open subsets of BX∗ of diameter at most ε will then leave a subset of (1− δ(ε))BX∗ , where
δ(ε) is the modulus of convexity of BX∗ . Repeating the procedure n times will leave a subset
of (1 − δ(ε))nBX∗ , which will eventually have diameter less than ε. Thus all of BX∗ will be
removed in a finite number of steps, and then taking the suppremum over ε > 0 gives that X
has Szlenk index ω0. Thus Theorem A is an immediate corollary of Theorem 4.1.

We will recall one of the embedding results established in [10], and discuss how the con-
struction can be slightly modified to be better incorporated into the construction of [2]. The
construction in [10] is quite technical and combines some of the upper estimate results from
[11] with the general Bourgain-Delbaen construction. For the sake of simplicity, we will avoid
getting too deep into the details. By [19], we may assume that X is reflexive with an FDD (Ei)
which satisfies block upper `p estimates for some 1 < p < ∞. The following theorem is one of
the major results in [10] together with some of the useful properties given by the construction.

Theorem 4.2. [10] Let X be a Banach space with separable dual and a shrinking FDD (Ei).
Then X embeds into a L∞ space Y with Y ∗ isomorphic to `1. Furthermore, Y may be con-
structed to have the following properties:

a) Y has a shrinking FDD denoted by (Fi) with decomposition constant at most 2 and pro-
jection operators denoted by P[k,n] for each 1 ≤ k ≤ n.

b) There exists a subsequence (ki) of N such that Ei ⊂ Fki for every i ∈ N, and hence
P[k,n]x ∈ X for all x ∈ X and k ≤ n.

The space Y is constructed using Bourgain-Delbaen families of functionals as discussed in
section 2, and we keep the same notation. Before discussing how the construction in [10] may
be adapted, we note the following.

Remark. In any Bourgain-Delbaen space, whenever γ ∈ Γ is of the form γ = (n, β, b∗) or γ =
(n, k, ξ, β, b∗) such that 0 ≤ β ≤ c for some constant c, we may recode γ to be γ = (n, c, (β/c)b∗)
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or γ = (n, k, ξ, c, (β/c)b∗). This keeps the equation for c∗γ unchanged. Thus recoding in this
manner will produce the same Bourgain-Delbaen space. This will make notation easier for us,
and allow us to be more consistent with the construction in [2].

We now claim that the construction in [10] can be adapted to satisfy the following proposition.

Proposition 4.3. Let X be a Banach space with separable dual and a shrinking FDD (Ei).
Then X embeds into a L∞ space Y with Y ∗ isomorphic to `1. Furthermore, Y can be constructed
to satisfy Theorem 4.2 as well as the following:

c) There is a constant 0 < c < 1
16

such that the weight of γ is c for every γ ∈ Γ and 1
c
∈ N.

d) For each γ ∈ ∆
(1)
n , there exists k < n − 1, ξ ∈ ∆k, η ∈ Γn−1 \ Γk, and β ∈ [0, c] such

that
e∗γ = e∗ξ + βe∗η + d∗γ

e) There is a constant `0 ∈ N such that the age of γ is at most `0 for every γ ∈ Γ.

Proof. We will not recall the full construction of [10], but will just give a brief discussion about
how it can be simply modified. We let 0 < c < 1

16
be any constant satisfying 1

c
∈ N. Lemma

4.1 in [10] is used to obtain a countable set D ⊂ BX∗ which (1 − ε)-norms X (among other
properties). We replace each f ∗ ∈ D \ ∪E∗i with (c/2)f ∗. The construction of [10] then goes
through, except that we obtain a (c/2− cε/2)−1-embedding of X into Y instead of a (1− ε)−1-
embedding. Furthermore, this will result in the weight of γ being at most c for every γ ∈ Γ.
Thus property c) is satisfied by the remark after Theorem 4.2.

After our modification, we will have that for each γ ∈ ∆
(1)
n+1, there exists η, ξ ∈ Γn such that

c∗γ = αγe
∗
ξ + βγe

∗
η for some constants αγ, βγ ≥ 0 with βγ ≤ c/2 and either αγ = 1 or αγ ≤ c/2.

In the case that αγ ≤ c/2 we set b∗ = (αγ/c)e
∗
ξ + (βγ/c)e

∗
η ∈ B`1(Γn), and hence c∗γ = cb∗. In this

case, we may then consider γ to have type 0, and hence we have that α = 1 for every γ ∈ Γ of
type 1. Thus property d) is satisfied.

In the construction of [10], the age of an element γ ∈ Γ will be equal to the length of the
optimal c-decomposition of a particular functional fγ ∈ BX∗ . By optimal c-decomposition,

we mean a block sequence (fi)
k
i=1 in X∗ such that

∑k
i=1 fi = fγ, ‖fi + fi+1‖ ≥ c, and for each

1 ≤ i ≤ k, either ‖fi‖ < c or fi ∈ E∗j for some j ∈ N. The condition that X satisfies block upper
`p estimates implies that X∗ satisfies block lower `q estimates. Hence, there exists a constant

C > 0 such that if (fi)
k
i=1 ⊂ X∗ is a c-decomposition then 1 ≥ ‖f‖ ≥ ‖

∑bk/2c
i=1 f2i−1 + f2i‖ ≥

Cc(bk/2c)1/q. Thus there is a constant `0 ∈ N such that the length of any c-decomposition of
an element of X∗ is at most `0, and hence the age of γ is at most `0 for every γ ∈ Γ. Thus
property (e) is satisfied. �

In our next step we will use the construction in [2], and increase the sets ∆n to sets ∆n =
∆n∪Θn in such a way, that X will still embed into a Bourgain-Delbaen space Z corresponding
to the Bourgain-Delbaen sets (∆n), and will have the additional property that all operators on
Z will be compact perturbations of a scalar multiple of the identity.
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Recall that we have two sequences (mj) and (nj) in N satisfying the properties of (15). We
now also require that 1/c = m1 and n1 ≥ 2`0.

By induction, we define for every n ∈ N, sets Θ
(0)
n and Θ

(1)
n . In the notation of Definition

2.1 we will always have α = 1, and we will therefore suppress this dependency. We will write

(n,m−1
i , b∗) for elements in Θ

(0)
n and (n, k, ξ,m−1

i , b∗) for elements in Θ
(1)
n .

We let Θ
(0)
1 = Θ

(1)
1 = ∅, and assuming we defined Θ

(0)
j and Θ

(1)
j , for j = 1, 2 . . . , n, we let

∆
(0)

j = ∆
(0)
j ∪ Θ

(0)
j , ∆

(1)

j = ∆
(1)
j ∪ Θ

(1)
j , Θj = Θ

(0)
j ∪ Θ

(1)
j , ∆j = ∆

(0)

j ∪∆
(1)

j , Λj =
⋃j
i=1 Θj and

Γj =
⋃j
i=1 ∆i, for j = 1, . . . n. We also assume that, so far (∆j)

n
j=1 satisfies the conditions of

Bourgain-Delbaen sets in Definition 2.1. The terms rank, type, weight, analysis and age of γ
are therefore defined for all γ ∈ Γn. Also the functionals c∗γ ∈ `1(Γn), as well as the projections

P
∗
[p,n] (on `1(Γn)) for 1≤p≤n, and the FDD (F i)

n
i=1 is defined.

Recall that in our original Bourgain-Delbaen space Y , we have X ⊆ Y such that the FDD
(Ei) for X fits nicely with the FDD (Fi) for Y . That is, for i ∈N with ki ≤ n, we have that
Ei ⊂ Fki . This provides the following (natural) embeddings

⊕i,ki≤nEi ↪→ ⊕j≤nFj ≡M `∞(Γn)

We will identify X ⊂ `∞(Γ) with X ⊕ 0 ⊂ `∞(Γ)⊕ `∞(Λ) = `∞(Γ). Specifically, if b∗ ∈ `1(Γn),
we denote by b∗|X the functional defined by the restriction of b∗ onto the space ⊕i,ki≤nEi⊕ 0 ⊂
`∞(Γn)⊕ `∞(Λn) = `∞(Γn).

Let ε > 0 and εn ↘ 0 such that
∑
εn < ε. For 0 ≤ p ≤ n, we choose finite sets B

∗
(p,n] which

form an εn net in the `1(Γn) norm for the set

{
b∗ ∈ `1(Γn) : ‖b∗‖`1 ≤ 1, b∗|X ≡ 0, b∗|Γp ≡ 0

}
.

We assume, without loss of generality, that B
∗
(p,n] ⊂ B

∗
(q,m] if q ≤ p < n ≤ m. We will also

require that if γ ∈ Γn \ Γn and e∗γ|Γp ≡ 0 then e∗γ ∈ B
∗
(p,n]. Note that the conditions ‖e∗γ‖`1 ≤ 1

and e∗γ|X ≡ 0 are automatically satisfied for γ ∈ Γ \ Γ. For f ∗ ∈ c00(Γ) we define the range of
f ∗ to be the smallest interval range(f ∗) = [p, n] such that f ∗|Γp−1

≡ 0 and f ∗|Γ\Γn ≡ 0.

Our sets Θ
(0)
n+1 and Θ

(1)
n+1 will be divided into elements of even weight, 1

m2j
for some 1 ≤

j ≤ bn+1
2
c, and elements of odd weight, 1

m2j−1
for some 1 ≤ j ≤ bn+2

2
c. We will put extra

constraints on elements of odd weight by using a coding function σ : Γ→ N as first introduced
in [18]. This will allow us to use the elements of odd weight in a similar manner to how special
functionals are used in [12] and other HI constructions. For our purposes, all we need is an
injective function σ : Γ → N satisfying σ(γ) > rank(γ) for all γ ∈ Γ. This function σ will be
incorporated in to our recursive construction of Γ.
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The sets Θ
(0)
n and Θ

(1)
n are now defined as follows:

Θ
(0)
n+1 =

⋃n−1
p=0

⋃bn+1
2
c

j=1

{(
n+ 1, p, 1

m2j
, b∗
)

: b∗ ∈ B∗(p,n]

}
∪
⋃n−1
p=0

⋃bn+2
2
c

j=1

{(
n+ 1, p, 1

m2j−1
, e∗η

)
:

η ∈ Λn,min range(e∗η) > p,
wt(η) = 1

m4i−2
, with m4i−2 > n2

2j−1

}(16)

and

Θ
(1)
n+1 =

⋃n−1
p=2

⋃b p
2
c

j=1

{(
n+ 1, p, ξ, 1

m2j
, b∗
)

: ξ ∈ Θp,wt(ξ) = 1
m2j

, age(ξ) < n2j, b
∗ ∈ B∗(p,n]

}
∪
⋃n−1
p=2

⋃b p+1
2
c

j=1

{(
n+ 1, p, ξ, 1

m2j−1
, e∗η

)
:
ξ ∈ Θp,wt(ξ) = 1

m2j−1
, age(ξ) < n2j−1,

η ∈ Λn,min range(e∗η) > p,wt(η) = 1
m4σ(ξ)

}
(17)

The sets ∆n = ∆n∪Θn form Bourgain-Delbaen sets as in Definition 2.1. By Proposition 2.3,
we have that (F̄ ∗n) is an FDD for `1(Γ̄) with decomposition constant not larger than 2. We let
Z be the Bourgain-Delbaen space associated to (∆n : n ∈ N), which again by Proposition 2.3
is a L∞,2 space.

In our construction of B
∗
(p,n] we required that e∗γ ∈ B

∗
(p,n] if γ ∈ Γ \ Γ and range(e∗γ) ⊂ (p, n].

In some circumstances, this allows us to conveniently combine all four possible cases for γ ∈ Γ\Γ
into one general case. For instance, if γ ∈ Γ \ Γ has age a and weight m−1

j , then the evaluation
analysis of γ is given by

e∗γ =
a∑
i=1

d∗ξi +m−1
j

a∑
i=1

b∗i ,

where b∗i ∈ B(pi−1,pi] and ξi ∈ Θpi for some sequence of non-negative integers (pi)
a
i=0 ⊂ N0. It

is important to point out that we do not include the projection operators P ∗(pi−1,pi)
as we have

guaranteed that min range(b∗i ) > pi−1 and hence P ∗(pi−1,∞)b
∗
i = b∗i .

Our first goal is to show that X is naturally isomorphic to a subspace of Z. We are given
that X ⊂ Y ⊂ `∞(Γ) and that Z ⊂ `∞(Γ ∪ Λ) = `∞(Γ) ⊕ `∞(Λ). We identify X with
X ⊕ 0 ⊂ `∞(Γ)⊕ `∞(Λ).

Lemma 4.4. If γ ∈ Γ \ Γ then e∗γ|X = c∗γ|X = d∗γ|X = 0.

Proof. We have that e∗γ = d∗γ+c∗γ, and thus it will be sufficient for us to just prove that c∗γ|X = 0.
We will prove this by induction on the rank of γ.

There are two possible cases for γ ∈ Γ \Γ. In the first case γ = (n+ 1, p,m−1
j , b∗) ∈ Θ

(0)
n+1 for

some b∗ ∈ B∗(p,n]. Thus c∗γ|X = m−1
j b∗|X = 0 as b∗|X = 0 for all b∗ ∈ B∗(p,n].

In the second case, γ = (n + 1, p, ξ,m−1
j , b∗) ∈ Θ

(1)
n+1 for some b∗ ∈ B∗(p,n] and ξ ∈ Θp. We

assume that c∗η|X = 0 for all η ∈ Γn \ Γn. Thus c∗γ|X = e∗ξ |X + m−1
2j b
∗|X = 0 as e∗ξ |X = 0 and

b∗|X = 0 for all b∗ ∈ B∗(p,n]. �

The following theorem, whose proof we omit, now follows from Lemma 4.4.
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Theorem 4.5. The space X⊕0 ⊂ `∞(Γ)⊕`∞(Λ) is a subspace of Z ⊂ `∞(Γ)⊕`∞(Λ) = `∞(Γ).

As in [2], we have the following proposition.

Proposition 4.6. Let γ, γ′ ∈ Θ
(1)
n+1 each have the same odd weight 1

m2j−1
and have respective

analyses (pi, e
∗
ηi
, ξi)1≤i≤a and (p′i, e

∗
η′i
, ξ′i)1≤i≤a′. If a ≥ a′ then there exists 1 ≤ ` ≤ a such that

ξ′i = ξi for all i < ` and wt(ηj) 6= wt(η′i) for all j and all ` < i ≤ a′

Proof. We choose 1 ≤ ` ≤ a′ to be maximal such that ξ′i = ξi for all i < `. If ` = a′ then the
proposition holds. If ` < a′ it must be that ξ′` 6= ξ`, and hence wt(η`) = m4σ(ξ`) 6= m4σ(ξ′`)

=
wt(η′`). In this setup, ages are simply given by age(ξi) = i and age(ξ′j) = j for all 1 ≤ j ≤ a
and 1 ≤ i ≤ a′. Thus whenever i 6= j we have that wt(ηj) = m4σ(ξj) 6= m4σ(ξ′i)

= wt(η′i). If
j > ` then the analysis of ξj is (pi, e

∗
ηi
, ξi)1≤i≤j−1 and the analysis of ξ′j is (p′i, e

∗
η′i
, ξ′i)1≤i≤j−1.

The elements ξj and ξ′j clearly have different analyses as ξ′` 6= ξ`, and thus ξj 6= ξ′j. We then
have that wt(ηj) = m4σ(ξj) 6= m4σ(ξ′j)

= wt(η′j). We have covered all the cases, and thus the
proposition is proven. �

If we are given some γ ∈ Γ then we can find the analysis of γ through simple iteratation.
Conversely, it will be important for us to be able to choose an element γ ∈ Γ which has some
specified analysis. The following lemmas state essentially that if we satisfy some important
conditions, then we are able to choose such a γ.

Lemma 4.7. Let a, j be positive integers such that a ≤ n2j. If p0 < p0 + 1 < p1 < p1 + 1 <

p2 < · · · < pa are natural numbers with 2j ≤ p1 and b∗r is a functional in B
∗
(pr−1,pr−1] for all

1 ≤ r ≤ a, then there are elements ξr ∈ Θpr each with weight 1
m2j

such that the analysis of

γ = ξa is (pr, b
∗
r, ξr)

a
r=1.

Proof. It is specified that 2j ≤ p1, and thus (p1, p0,
1
m2j

, b∗1) ∈ Θ
(0)
p1 . We now assume that

1 ≤ k < a and that ξk has been found with analysis (pr, b
∗
r, ξr)

k
r=1 and weight 1

m2j
. We have

that age(ξk) = k < a ≤ n2j, and so ξk+1 = (pk+1, pk, ξk,
1
m2j

, b∗k+1) ∈ Θ
(1)
pk+1 . Thus e∗ξk+1

=

d∗ξk+1
+e∗ξk + 1

m2j
b∗k+1, and hence the analysis of ξk+1 is (pr, b

∗
r, ξr)

k+1
r=1 . The proof is then complete

by induction. �

A similar proof yields the following lemma.

Lemma 4.8. Let a, j0 be positive integers such that a ≤ n2j0−1. Let p0 < p0 +1 < p1 < p1 +1 <
p2 < · · · < pa be natural numbers with 2j0−1 ≤ p1. Let (ηr)

a
r=1 ⊂ Λ with range(e∗ηr) ⊂ (pr−1, pr]

such that wt(η1) = 1
m4j1−2

for some j1 ∈ N with m4j1−2 > n2
2j0−1 and wt(ηr) = 1

m4σ(ηr−1)
for all

2 ≤ r ≤ a. Then there exist elements ξr ∈ Θpr each with weight 1
m2j0−1

such that the analysis

of γ = ξa is (pr, e
∗
ηr , ξr)

a
r=1.

Lemma 4.9. If p < q and x ∈ ⊕qi=p+1Fi such that ‖x‖Z/X = 1 then there exists b∗ ∈ B∗(p,q] with

b∗(x) > 1
8
− εq.
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Proof. As ‖x‖Z/X = 1, there exists x∗ ∈ SZ∗ such that x∗(x) = 1 and x∗|X = 0. We then set

b∗0 = 1
8
P
∗
[p+1,q]x

∗. We have that ‖b∗0‖`1(Γq) ≤ 2‖b∗0‖ ≤ 1
4
‖P ∗[p+1,q]‖‖x∗‖ ≤ 1. If x0 ∈ X, then our

particular embedding of X into Z results in P [p+1,q]x0 ∈ X. Thus b∗0(x0) = 1
8
x∗(P [p+1,q]x) = 0, as

x∗|X = 0. Combining these properties gives that b∗0 ∈
{
b∗ ∈ ⊕ni=p+1F̄

∗
i : ‖b∗‖`1 ≤ 1, b∗|X ≡ 0

}
,

and hence there exists b∗ ∈ B
∗
(p,q] such that ‖b∗ − b∗0‖ ≤ εq. Thus we have that b∗(x) >

b∗0(x)− εq ≥ 1
8
− εq. �

Lemma 4.10. Let (xr)
a
r=1 be a skipped block sequence in Z with a ≤ n2j and 2j ≤ min ran(x2).

Then there exists γ ∈ Λ of weight 1
m2j

such that
∑a

i=1 xi(γ) ≥ 1−8ε
8m2j

∑a
i=1 ‖xi‖Z/X .

Proof. Choose p0 < p1 < p2 < · · · < pa such that ran(xr) ⊂ (pr−1, pr) for all 1 ≤ r ≤ a. By

Lemma 4.9 we may choose b∗r ∈ B
∗
(pr−1,pr)

such that b∗r(xr) ≥
1−8εpr−1

8
‖x‖Z/X . By Lemma 4.7

there exists ξr ∈ Θpr for each 1 ≤ r ≤ a with weight 1
m2j

such that the analysis of γ = ξa is

(pr, b
∗
r, ξr)

a
r=1. We first note that d∗ξi(xr) = 0 for all i, r because ξi ∈ Θpi and pi 6∈ ran(xr) for

all i, r. We further note that b∗i (xr) = 0 for all i 6= r because ran(xr), ran(b∗r) ⊂ (pr−1, pr). We
now obtain the lower estimate for

∑a
i=1 xi(γ) = e∗γ(

∑a
i=1 xi) by using the evaluation analysis of

γ.

e∗γ(
a∑
r=1

xr) =
a∑
i=1

d∗ξi(
a∑
r=1

xr)+
1

m2j

a∑
i=1

b∗i (
a∑
r=1

xr) =
1

m2j

a∑
r=1

b∗r(xr) >
1

m2j

a∑
r=1

1− 8εpr−1

8
‖xr‖Z/X

�

To simplify some proofs we will now add an additional condition to the definition of C-RIS.

Definition 4.11. Let (xn) be a block basis in Z and C > 0. We say (xn) is a C-Rapidly
Increasing Sequence, or C-RIS, if for k∈N

(1) ‖xk‖ ≤ C

(2) |xk(γ)| ≤ Cweight(γ) if k ≥ 2 and γ ∈ Γ with weight(γ) ≥ m−1
max rg(xk−1).

(3) |xk(γ)| ≤ Cm−1
1 if γ ∈ Γ with weight(γ) = m−1

1

Adding condition (3) is not a significant change for us since if (xk)
∞
k=1 is a C-RIS for Definition

2.6, then (xk)
∞
k=2 is a C-RIS for Definition 4.11.

It will be essential to obtain certain upper bounds on values of the form |e∗γ
∑

k∈I λkxk| where

(xk) is a C-RIS. Estimating these bounds for γ ∈ Γ \Γ will follow proofs similar to those in [2].

Lemma 4.12. Let (xk) be a C-RIS in Z. If γ ∈ Γ \ Γ and wt(γ) = m−1
i then,

|e∗γ(xk)| ≤ Cm−1
i if i < max ran(xk−1) or if i > max ran(xk)

15



Proof. By the definition of C-RIS, the case i < max ran(xk−1) is immediate. The evaluation
analysis for γ is given by

e∗γ =
a∑
r=1

d∗ξr +
1

mi

b∗r,

for some (ξr)
a
r=1 ⊂ Γ\Γ and (b∗r)

a
r=1 ⊂ B`1(Γ). The element ξr has weightm−1

i , for each 1 ≤ r ≤ a.
This is important as the set Θp contains elements of weightm−1

i only if p ≥ i. Thus if we consider
p1 so that ξ1 ∈ Θp1 then p1 ≥ i > max ran(xk). Hence, min range(d∗ξr) ≥ p1 > max range(xk)
for all 1 ≤ r ≤ a and min range(b∗r) > p1 > max ran(xk) for all 1 < r ≤ a. Thus we have that
d∗ξr(xk) = 0 for all 1 ≤ r ≤ a, and b∗r(xk) = 0 for all 1 < r ≤ a. Applying this to the evaluation
analysis for e∗γ gives the following desired result,

|e∗γ(xk)| = |
a∑
r=1

d∗ξr(xk) +
1

mi

b∗r(xk)| = |
1

mi

b∗1(xk)| ≤
1

mi

‖b∗1‖‖xk‖ ≤
C

mi

�

Lemma 4.13. Let (xk)k∈I be a C-RIS in Z for some interval I ⊆ N, let λk be real numbers,
and let γ be an element of Γ. There exists a functional g∗ ∈ W [(An1 ,m

−1
1 )] such that

(1) supp(g∗) ⊂ I
(2) |e∗γ(

∑
k∈I λkxk)| ≤ Cg∗(

∑
k∈I |λk|ek).

Proof. We proceed by induction on the rank of γ ∈ Γ. If rank(γ) = 1 then

e∗γ(
∑
k∈I

λkxk) = λk0e
∗
γ(xk0) where k0 = min(I).

We may thus simply take g∗ = e∗k0 ∈ W [(An1 ,m
−1
1 )].

We now assume that γ ∈ Γ has rank greater than 1 and age a. We assume that the lemma
holds for all elements of Γ with rank less than that of γ. We consider the evaluation analysis
of e∗γ, which is given by

e∗γ =
a∑
i=1

d∗ξi +
a∑
i=1

βie
∗
ηi
,

for some sequences (ξi)
a
i=1, (ηi)

a
i=1 ⊂ Γ and (βi) ⊂ [0,m−1

1 ]. Recall that `0 was chosen so that
age(η) ≤ `0 for all η ∈ Γ. Let (pi)

a
i=0 ⊂ N be the sequence such that ξi ∈ ∆pi for all 1 ≤ i ≤ a

and p0 = 0. Let I0 = {k ∈ I : pr ∈ range(xk) for some 1 ≤ r ≤ a}. As (xk) is a block sequence,
for each 1 ≤ r ≤ a there is at most one k ∈ I such that pr ∈ range(xk). Thus, |I0| ≤ a ≤ `0.
We then set Ir = {k ∈ I : range(xk) ⊂ (pr−1, pr)}. Note that each Ir is an interval, and if
k 6∈ ∪ar=0Ir, then e∗γ(xk) = 0. We now have the following equality,

e∗γ(
∑

λkxk) = e∗γ(
∑
k∈I0

λkxk) +
a∑
r=1

βre
∗
ηr(
∑
k∈Ir

λkxk)

16



For k ∈ I0, we apply condition (3) in the definition of C-RIS to get the estimate |e∗γ(xk)| ≤
Cm−1

1 . Thus we now have that,

(18) |e∗γ(
∑

λkxk)| ≤ Cm−1
1

∑
k∈I0

|λk|+
a∑
r=1

|βre∗ηr(
∑
k∈Ir

λkxk)|.

For each 1 ≤ r ≤ a, we apply the induction hypothesis to ηr ∈ Γ to obtain g∗r ∈ W [(An1 ,m
−1
1 )]

with supp(g∗r) ⊂ Ir, such that

(19) |e∗ηr(
∑
k∈Ir

λkxk)| ≤ Cg∗r(
∑
k∈Ir

|λk|ek)).

We now define g∗ by setting g∗ = m−1
1 (
∑

k∈I0 e
∗
k +
∑a

r=1 g
∗
r). This is a sum, weighted by m−1

1 of

at most 2`0 ≤ n1 functionals in W [(An1 ,m
−1
1 )] which are each supported on successive intervals.

Thus g∗ ∈ W [(An1 ,m
−1
1 )]. We now use (18) and (19) to obtain the following.

|e∗γ(
∑

λkxk)| ≤ Cm−1
1

∑
k∈I0

|λk|+
a∑
r=1

|βre∗ηr(
∑
k∈Ir

λkxk)| by (18)

≤ Cm−1
1

∑
k∈I0

|λk|+
a∑
r=1

|βr|Cg∗r(
∑
k∈Ir

|λk|ek) by (19)

≤ Cm−1
1

∑
k∈I0

|λk|+
a∑
r=1

m−1
1 Cg∗r(

∑
k∈Ir

|λk|ek) as |βr| ≤ m−1
1

= Cm−1
1 (
∑
k∈I0

e∗k +
a∑
r=1

g∗r)(
∑
k∈I0

|λk|ek +
a∑
r=1

∑
k∈Ir

|λk|ek) as supp(g∗r) ⊂ Ir

= Cg∗(
∑
k∈I

|λk|ek)

�

Proposition 4.14 (Basic Inequality). Let (xk)k∈I be a C-RIS in Z for some interval I ⊆ N,
let λk be real numbers, and let γ be an element of Γ. There exists k0 ∈ I and a functional
g∗ ∈ W [(A3nj ,m

−1
j )j∈N] such that:

(1) either g∗ = 0 or weight(g∗) = weight(γ) and supp(g∗) ⊂ {k ∈ I : k > k0}
(2) |e∗γ(

∑
k∈I λkxk)| ≤ 2C|λk0|+ 2Cg∗(

∑
k∈I |λk|ek)

Moreover, if j0 is such that |e∗ξ(
∑

k∈J λkxk)| ≤ C maxk∈J |λk| for all subintervals J of I and all

ξ ∈ Γ of weight m−1
j0

, then we may choose g∗ to be in W [(A3nj ,m
−1
j )j 6=j0 ].

Proof. We assume that γ ∈ Γ and will show that the moreover part holds. For γ ∈ Γ, the rest
of the proposition is an obvious corollary of Lemma 4.13. We first consider j0 6= 1. By Lemma
4.13, there exists g∗ ∈ W [(An1 ,m

−1
1 )] satisfying (1) and (2). Thus g∗ ∈ W [(An1 ,m

−1
1 )] ⊂

W [(A3nj ,m
−1
j )j 6=j0 ], which proves the moreover part. We now consider j0 = 1, and assume

17



that |e∗ξ(
∑

k∈J λkxk)| ≤ C maxk∈J |λk| for all subintervals J of I and all ξ ∈ Γ of weight m−1
1 .

However, γ has weight m−1
1 , and thus we may take g∗ = 0 ∈ W [(A3nj ,m

−1
j )j 6=j0 ]. Thus the

proposition is true for all γ ∈ Γ.
We now consider the case γ ∈ Γ \ Γ, and will proceed by induction on the rank of γ. There

are no γ ∈ Γ \Γ of rank 1, and thus we first consider the case that rank(γ) = 2. We then have
that

e∗γ(
∑
k∈I

λkxk) = λk0e
∗
γ(xk0) + λk1e

∗
γ(xk1),

where k0 and k1 are the first two elements of I. Thus setting g∗ = e∗k1 gives the desired
inequality.

We now assume that γ ∈ Γ \ Γ has rank greater than 2, age a, and weight m−1
h . We suppose

that there is some ` ∈ I such that max range(x`−1) < h ≤ max range(x`). The simpler cases
of h ≤ max range(x1) or max rang(xk) < h for all k ∈ I can be proved in the same way, and
so will not be considered. We will split the following summation into three parts, and estimate
each part separately.

(20) e∗γ(
∑
k∈I

λkxk) =
∑

k∈I,k<`

λke
∗
γ(xk) + λ`e

∗
γ(x`) + e∗γ(

∑
k∈I,k>`

λkxk).

For the first part, we have by our choice of ` that h > max range(xk) for all k < `. Thus for
k < `, Lemma 4.12 gives us |e∗γ(xk)| ≤ Cm−1

h . Furthermore, the inequality max range(x`) < h

implies that ]{k ∈ I : k < `} < h, and thus trivially ]{k ∈ I : k < `}m−1
h < 1. We now have

the following upper bound.

|
∑

k∈I,k<`

λke
∗
γ(xk)| ≤ C

∑
k<`

m−1
h |λk| ≤ C]{k ∈ I : k < `}m−1

h max
k<`
|λk| < C max

k<`
|λk|

For the second term we have the trivial bound

|λ`e∗γ(x`)| ≤ C|λ`|.
Thus combining the first two terms gives the inequality

(21) |e∗γ(
∑

k∈I,k≤`

λkxk)| ≤ C max
k∈I,k<`

|λk|+ C|λ`| ≤ 2C|λk0|,

for some particular k0 ≤ `.
We now set I ′ = {k ∈ I : k > `}, and focus on estimating the last term: |e∗γ(

∑
k∈I′ λkxk)|.

The evaluation analysis of e∗γ is given by

e∗γ =
a∑
r=1

d∗ξr +m−1
h

a∑
r=1

b∗r,

for some (ξr)
a
r=1 ⊂ Γ \ Γ and (b∗r)

a
r=1 ⊂ B`1(Γ). Let (pr)

a
r=1 ⊂ N be the sequence such that

ξr ∈ Θpr for each 1 ≤ r ≤ a. This implies that b∗r ∈ B
∗
(pr−1,pr)

for all 1 ≤ r ≤ a, where we
18



set p0 = 0. Let I ′0 = {k ∈ I ′ : pr ∈ range(xk) for some 1 ≤ r ≤ a}. As (xk) is a block
sequence, for each 1 ≤ r ≤ a there is at most one k ∈ I ′ such that pr ∈ range(xk). We then set
I ′r = {k ∈ I ′ : range(xk) ⊂ (pr−1, pr)}. Note that, if k ∈ I ′ \ ∪ar=0I

′
r, then e∗γ(xk) = 0. We now

have the following equality,

(22) e∗γ(
∑
k∈I′

λkxk) =
∑
k∈I′0

λke
∗
γ(xk) +m−1

h

a∑
r=1

b∗r(
∑
k∈I′r

λkxk)

As b∗r ∈ B`1(Γ) ∩⊕
pr−1
pr−1+1F

∗
i , we have b∗r =

∑
η∈Γpr−1

αηe
∗
η for some αη with

∑
|αη| ≤ 1. Thus we

may choose ηr ∈ Γpr−1 such that

(23) |b∗r(
∑
k∈I′r

λkxk)| ≤ |e∗ηr(
∑
k∈I′r

λkxk)|.

Note that e∗η(xk) = 0 for all η ∈ Γpr−1 and k ∈ I ′r, and thus we may assume that pr−1 <

rank(ηr) < pr. For each r, we apply the induction hypothesis to ηr ∈ Γ and the C-RIS (xk)k∈I′r ,
obtaining kr ∈ I ′r and a functional g∗r ∈ W [(A3nj ,m

−1
j )j∈N] supported on {k ∈ I ′r : k > kr}

satisfying

(24) |e∗ηr(
∑
k∈I′r

λkxk)| ≤ 2C|λkr |+ 2Cg∗r(
∑
k∈I′r

|λk|ek)

We now define g∗ by setting

(25) g∗ = m−1
h (
∑
k∈I′0

e∗k +
a∑
r=1

(e∗kr + g∗r)).

This is a sum, weighted by m−1
h of at most 3nh functionals in W [(A3nj ,m

−1
j )j∈N] which are each

supported on successive intervals. Thus g∗ ∈ W [(A3nj ,m
−1
j )j∈N]. We now obtain the following

estimates.

|e∗γ(
∑

λkxk)| ≤ 2C|λk0|+ Cm−1
h

∑
k∈I′0

|λk|+m−1
h

a∑
r=1

|b∗r(
∑
k∈I′r

λkxk)| by (20), (21) and (22)

≤ 2C|λk0 |+ Cm−1
h

∑
k∈I′0

|λk|+m−1
h

a∑
r=1

|e∗ηr(
∑
k∈I′r

λkxk)| by (23)

≤ 2C|λk0|+ 2Cm−1
h (
∑
k∈I′0

|λk|+
a∑
r=1

|λkr |+ g∗r(
∑
k∈I′r

|λk|ek)) by (24)

= 2C|λk0|+ 2Cg∗(
∑
k∈I′
|λk|ek) by (25).

If j0 satisfies the moreover condition in the statement of the proposition we proceed by the same
induction. The base case is the same. When we prove the inductive step for γ with weight m−1

h
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we need to consider separately the cases h 6= j0 and h = j0. For the case h 6= j0, the proof
remains unchanged as we are able to assume by induction that g∗r ∈ W [(A3nj ,m

−1
j )j 6=j0 ]. Thus

when we define g∗ as in (25) we have that g∗ ∈ W [(A3nj ,m
−1
j )j 6=j0 ].

For the remaining case h = j0, the moreover assumption gives automatically that |e∗γ(
∑

k∈I λkxk)| ≤
C maxk∈I |λk|. Thus we are able to take g∗ = 0. �

The basic inequality relates the functionals e∗γ with γ ∈ Γ to functionals in the mixed Tsirelson

space W [(A3nj ,m
−1
j )j∈N]. Recall that Proposition 3.1 gives us good estimates for what hap-

pens when we apply functionals in mixed Tsirelson spaces to averages. We combine the basic
inequality with Proposition 3.1 to obtain the following lemma which will be used extensively
in proving our main result.

Lemma 4.15. Let x̄ = (xk)
nj0
k=1 be a skipped block C-RIS in Z with j0 > 1. Then the vector

z(j0, x̄) := z :=
mj0
nj0

∑nj0
k=1 xk has the following four properties.

(1) d∗ξ(z) ≤ 3Cmj0
nj0

< C
mj0

for all ξ ∈ Γ

(2) ‖z‖ < 3C
(3) For all γ ∈ Γ \ Γ with weight 1

mh
such that h 6= j0 we have

|e∗γ(z)| ≤

{
5Cm−1

h if h < j0,

3Cm−1
j0
, if h > j0.

(4) |e∗γ(z)| < Cm−1
j0

for all γ ∈ Γ

Proof. Let ξ ∈ Γ. We have that (xk) is a block sequence and hence d∗ξ(
∑
xk) = d∗ξ(xm) for

some 1 ≤ m ≤ nj0 . The inequality in (1) is given by |d∗ξ(
mj0
nj0

∑nj0
k=1 xk)| = |d∗ξ

mj0
nj0
xm)| ≤

‖d∗ξ‖
mj0
nj0
‖xk‖ ≤

3Cmj0
nj0

< C
mj0

, since ‖d∗ξ‖ ≤ 3

To obtain the inequality in (2), let γ ∈ Γ then apply the basic inequality to e∗γ(z) to obtain

|e∗γ(z)| ≤ 2mj0n
−1
j0
C + 2Cmj0g

∗(n−1
j0

nj0∑
i=1

ek) for some g∗ ∈ W [(A3nj ,m
−1
j )j∈N]

≤ 2mj0n
−1
j0
C + 2C by Proposition 3.1

Thus we have that ‖z‖ = supγ∈Γ |e∗γ(z)| < 3C.

To obtain the inequality in (3), consider γ ∈ Γ with weight m−1
h such that h 6= j0. Applying

the basic inequality to e∗γ(z) gives g∗ ∈ W [(A3nj ,m
−1
j )j∈N] with g∗ = 0 or weight(g∗) = m−1

h

such that

|e∗γ(z)| ≤ 2mj0n
−1
j0
C + 2Cmj0g

∗(n−1
j0

nj0∑
i=1

ek)
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We now apply Proposition 3.1 to g∗ to obtain

g∗(n−1
j0

nj0∑
i=1

ek) ≤
{

2m−1
h m−1

j0
if h < j0;

m−1
h if h > j0.

Combining the above two inequalities gives

|e∗γ(z)| ≤
{

2Cmj0n
−1
j0

+ 4Cm−1
h if h < j0;

2Cmj0n
−1
j0

+ 2Cmj0m
−1
h if h > j0.

Thus (3) follows as 2mj0n
−1
j0
≤ m−1

j0
by (15) and 2Cmj0m

−1
h ≤ Cm−1

j0
when h > j0.

For our final inequality (4) we apply Lemma 4.13 to γ ∈ Γ to obtain g∗ ∈ W [(An1 ,m
−1
1 )]

such that

|e∗γ(z)| ≤ Cmj0g
∗(n−1

j0

nj0∑
i=1

ek).

We now apply Proposition 3.1 to g∗, using that g∗ ∈ W [(An1 ,m
−1
1 )] ⊂ W [(A3nj ,m

−1
j )j 6=j0 ], to

obtain

g∗(n−1
j0

nj0∑
i=1

ek) ≤ 2m−1
1 m−2

j0
as 1 < j0.

Combining the above two inequalities gives (4) as 2m−1
1 < 1. �

Proposition 4.16. The FDD (F̄i) of Z is shrinking and hence Z∗ is isomorphic to `1.

Proof. The Banach space Z is a separable L∞ Banach space, and thus Z∗ is isomorphic to `1

if and only if `1 does not embed into Z [17]. Thus if (F̄i) is shrinking then Z∗ is isomorphic to
`1. We now prove that (F̄i) is shrinking. Assume to the contrary that there exists a normalized
block basis (bk) which is not weakly null. Hence there exists f ∈ Z∗ such that |f(bk)| 6→ 0. By
Proposition 2.8 there also exists some skipped block C-RIS (xk) such that |f(xk)| 6→ 0. After
passing to a subsequence we may assume that |f(xk)| > δ for all k ∈ N and some δ > 0. In
particular we have that |f(n−1

2j

∑n2j

k=1 xk)| > δ for all j ∈ N. However, by Lemma 4.15 (2) we

have that ‖n−1
2j

∑n2j

k=1 xk‖ ≤ 3Cm−1
2j . This is a contradiction if j ∈ N is chosen to be sufficiently

large. �

We are now prepared to prove our main result.

Proof of Theorem 4.1. By Theorem 2.9 we just need to prove that if T is an operator on Z
and (xn) is a RIS in Z then limn→∞ dist(T (xn), [xn] + X) = 0. We assume to the contrary
that there is some C > 1 and a C-RIS (xn) with ‖T (xn)‖Z/X+[xn] ≥ 8 + 8ε. As (xn) is a
block sequence of a shrinking FDD, we may pass to a subsequence of (xn) and a compact
perturbation of T so that there exists integers 0 = p0 < p1 < p1 + 1 < p2 < p2 + 1 < p3 · · · with
ran(xn)∪ ran(T (xn)) ⊂ (pn−1 + 1, pn) for all n ∈ N. Following the proof of Lemma 4.9 we may
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choose for each n ∈ N a functional b∗n ∈ B
∗
(pn−1+1,pn) such that |b∗n(xn)| < εn and b∗n(T (xn)) ≥ 1.

We recall from Lemma 4.15 that we denote

z(j, (xi)) =
mj

nj

nj∑
k=1

xk for each j ∈ N.

We now fix some i0 ∈ N. The proof will proceed by constructing a block sequence (ui)
n2i0−1

i=1 of
(xi) with each ui being of the form z(j, x̄i) for some j ∈ N and some subsequence x̄i of (xn).
First we choose j1 such that m4j1−2 > n2

2i0−1 and k1 ∈ N so that 4j1−2 ≤ pk1 . We then set u1 =

z(4j1 − 2, (xi)i≥k1). By Lemma 4.7 we may choose γ1 ∈ Γ with weight m4j1−2 and rank(γ1) >
max{supp(u1)∪ supp(T (u1))} such that the analysis of γ1 is (pr, b

∗
r, ξr)k1≤r≤k1+n4j1−2−1 for some

ξr ∈ Θpr . A simple calculation shows that e∗γ1(T (u1)) ≥ 1 and |e∗γ1(u1)| < ε1. We now construct

ur ∈ Z and γr ∈ Γ \ Γ for each 2 ≤ r ≤ n2i0−1 according to the following procedure. Given
2 ≤ r ≤ n2i0−1, we set jr = σ(γr−1) and choose kr ∈ N such that 4jr < pkr . We then
set ur = z(4jr, (xi)

∞
i=kr

). Again by Lemma 4.7 we may choose γr ∈ Γ of weight 1
m4jr

with

rank(γr) > max{supp(ur) ∪ supp(T (ur))} such that e∗γr(T (ur)) ≥ 1 and |e∗γr(ur)| < εr. This

completes the construction of (ur)
n2i0−1

r=1 . We now set u = z(2i0 − 1, (ur)). Note that we have
chosen (γr)

n2i0−1

r=1 and (jr)
n2i0−1

r=1 to satisfy the conditions of Lemma 4.8, and thus there exists γ ∈
Γ with analysis (pkr + 1, e∗γr , e

∗
ξr

) for some ξr ∈ Θpkr+1 with weight 1
m2i0−1

. A simple calculation

shows that e∗γ(T (u)) ≥ 1 and e∗γ(u) < ε. We will prove that actually ‖u‖ ≤ 20Cm−1
2i0−1. Thus

by choosing i0 to be sufficiently large we reach a contradiction with ‖T‖ being bounded.
The norm of u is given by ‖u‖ = maxγ∈Γ |u(γ)|. By part (4) of Lemma 4.15, we have that

|u(γ)| ≤ Cm−1
2i0−1 for all γ ∈ Γ. We will prove that |u(γ)| ≤ 20Cm−1

2i0−1 for all γ ∈ Γ \ Γ using
the moreover part of Proposition 4.14. We first note that parts (2), (3), and (4) of Lemma 4.15
imply that the sequence (ur) is a 5C-RIS. Assuming we are able to satisfy the moreover part
of Proposition 4.14, we would have that

‖u‖ =

∥∥∥∥∥m2i0−1

n2i0−1

n2i0−1∑
r=1

ur

∥∥∥∥∥
≤10C

m2i0−1

n2i0−1

+ 10Cg∗

(
m2i0−1

n2i0−1

n2i0−1∑
r=1

er

)
for some g∗ ∈ W [(A3nj ,m

−1
j )j 6=2i0−1]

≤10C
m2i0−1

n2i0−1

+
10C

m2i0−1

by Proposition 3.1

≤ 10C

m2i0−1

+
10C

m2i0−1

.

Thus all that remains to be verified is the moreover part of Proposition 4.14. Given a subinterval
J of [1, n2i0−1] and an element γ′ ∈ Γ\Γ of weight m−1

2i0−1 we need to prove that |e∗γ′(
∑

r∈J ur)| ≤
4C. Without loss of generality we may assume that the age of γ′ is the maximal value n2i0−1.
We denote the analysis of γ′ by (q′r, e

∗
γ′r
, e∗ξ′r)r≤n2i0−1

and the analysis of γ by (qr, e
∗
γr , e

∗
ξr

)r≤n2i0−1
.
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We thus have the following evaluation analysis for γ′,

e∗γ′ =

n2i0−1∑
r=1

d∗ξ′r +
1

m2i0−1

e∗γ′r .

By the definition of Θn, it must be that wt(γ′r), wt(γr) < n−2
2i0−1 for all 1 ≤ r ≤ n2i0−1. This

important fact will be used repeatedly in the remainder of the proof. Because (ui) is a block
sequence, there exists 1 ≤ j ≤ n2i0−1 such that d∗ξr(

∑
i∈J ui) = d∗ξr(uj). By applying this fact

with part (1) of Lemma 4.15 we obtain the following inequality.

(26) |d∗ξr(
∑
i∈J

ui)| = |d∗ξr(uj)| ≤ Cwt(γj) < Cn−2
2i0−1 for all 1 ≤ r ≤ n2i0−1.

By Proposition 4.6 there exists 1 ≤ ` ≤ n2i0−1 such that ξ′r = ξr for all r < ` and wt(γ′j) 6= wt(γr)
for all j and all ` < r ≤ n2i0−1. In particular γ′r = γr and q′r = qr for all r < `. Thus we have
that

(27) |e∗γ′r(
∑
i∈J

ui)| = |e∗γr(
∑
i∈J

ui)| = |e∗γr(ur)| < εpkr−1
for all r < `.

Part (2) of Lemma 4.15 implies the following.

(28) |e∗γ′`(uj)| ≤ ‖uj‖ ≤ 3C if wt(γ′`) = wt(γj).

We use part (3) of Lemma 4.15 with the fact that wt(γ′r), wt(γr) < n−2
2i0−1 for all 1 ≤ r ≤ n2i0−1

to achieve

(29) |e∗γ′r(uj)| ≤ 5Cn−2
2i0−1 if wt(γ′r) 6= wt(γj).

We will apply Inequality (29) for the case r > ` and for the case r = ` with wt(γ′`) 6= wt(γj).
The sequence (e∗γ′r)1≤r≤n2i0−1

is a block sequence of (F̄ ∗i ) and (ui)1≤i≤n2i0−1
is a block sequence

of (F̄i). This implies the following simple combinatorial result.

(30) ]{(r, j)|e∗γ′r(uj) 6= 0} < 2n2i0−1.

Combining all the inequalities (26),(27),(28),(29), and (30) gives our desired estimate.

|e∗γ′(
∑
i∈J

ui)| =
n2i0−1∑
r=1

d∗ξ′r(
∑
i∈J

ui) +m−1
2i0−1

n2i0−1∑
r=1

e∗γ′r(
∑
i∈J

ui)

=

(n2i0−1∑
r=1

d∗ξ′r +m−1
2i0−1

(∑
r<`

e∗γ′r + e∗γ′` +
∑
r>`

e∗γ′r

))
(
∑
i∈J

ui)

< Cn−1
2i0−1 +m−1

2i0−1ε+m−1
2i0−13C +m−1

2i0−12n2i0−14Cn−2
2i0−1

< C < 5C.

Thus the moreover part of Proposition 4.14 has been verified, and the proof is complete. �
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