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Abstract
We prove that L2(R) contains a Schauder basis of non-negative functions. Similarly,
for all 1 < p < ∞, L p(R) contains a Schauder basic sequence of non-negative
functions such that L p(R) embeds into the closed span of the sequence. We prove as
well that if X is a separable Banach space with the bounded approximation property,
then any set in X with dense span contains a quasi-basis (Schauder frame) for X .

Mathematics Subject Classification 46B03 · 46B15 · 46E30 · 42C15

1 Introduction

Both the Fourier basis and the Haar basis for L2([0, 1]) consist of the constant 1
function together with a sequence of mean zero functions. Likewise, the Calderon
condition gives that every wavelet basis for L2(R) consists entirely of mean zero
functions. We are interested in the problem of determining for what 1 ≤ p < ∞ does
L p(R) have a Schauder basis ( f j )∞j=1 consisting entirely of non-negative functions. A
sequence ( f j )∞j=1 in L p(R) is called a Schauder basis for L p(R) if for all f ∈ L p(R)

there exists unique scalars (a j )
∞
j=1 such that
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f =
∞∑

j=1

a j f j . (1)

A Schauder basis is called unconditional if the series in (1) converges in every
order. Unconditionality is a desirable property, but it has been shown to be too strong
to impose on coordinate systems of non-negative functions. Indeed, for all 1 ≤ p < ∞,
L p(R) does not have an unconditional Schauder basis or even unconditional quasi-
basis (Schauder frame) consisting of non-negative functions [21]. In particular, both
the positive and negative parts of an unconditional Schauder basis must have infinite
weight (see [16] for precise quantitative statements).

Though L p(R) does not have an unconditional Schauder basis of non-negative
functions, it does contain subspaces which do. It is clear that any normalized sequence
of non-negative functions with disjoint support will be a Schauder basis for its closed
span andwill be 1-equivalent to the unit vector basis of �p. This trivial method is essen-
tially the only way to build an unconditional Schauder basic sequence of non-negative
functions in L p(R), as every normalized unconditional Schauder basic sequence of
non-negative functions in L p(R) is equivalent to the unit vector basis for �p [9]. Like-
wise, if ( f j , g∗

j )
∞
j=1 is an unconditional quasi-basis for a closed subspace X of L p(R)

and ( f j )∞j=1 is a sequence of non-negative functions then X embeds into �p [9].
The results for coordinate systems formed by non-negative functions are very dif-

ferent when one allows for conditionality. Indeed, for all 1 ≤ p < ∞, L p(R) has a
Markushevich basis consisting of non-negative functions [21], and the characteristic
functions of dyadic intervals form a quasi-basis for L p(R) consisting of non-negative
functions [21]. For the case of conditional Schauder bases, Johnson and Schechtman
constructed a Schauder basis for L1(R) consisting of non-negative functions [9]. Their
construction relies heavily on the structure of L1, and the problem on the existence
of conditional Schauder bases for L p(R) remained open for all 1 < p < ∞. Our
main result is to provide a construction for a Schauder basis of L2(R) consisting of
non-negative functions. For the remaining cases 1 < p < ∞ with p �= 2, we are
not able to build a Schauder basis for the whole space. However, we prove that for all
1 < p < ∞ there exists a Schauder basic sequence ( f j )∞j=1 of non-negative functions
in L p(R) such that L p(R) embeds into the closed span of ( f j )∞j=1.

There are interesting comparisons between results on coordinate systems of non-
negative functions for L p(R) and results on coordinate systems of translations of a
single function. As is the case for non-negative functions, there does not exist an
unconditional Schauder basis for L p(R) consisting of translations of a single function
([19] for p = 2, [18] for 1 < p ≤ 4, and [5] for 4 < p). On the other hand, for the range
2 < p < ∞ there does exist a sequence ( f j )∞j=1 of translations of a single function in
L p(R) and a sequence of functionals (g∗

j )
∞
j=1 in L p(R)∗ such that ( f j , g∗

j )
∞
j=1 is an

unconditional Schauder frame for L p(R) [5]. The corresponding result for the range
1 < p < 2 is unknown, but for 1 < p ≤ 2 the sequence of functionals (g∗

j )
∞
j=1 in

L p(R)∗ cannot be chosen to be semi-normalized [3]. We take a unifying approach and
prove that for all 1 ≤ p < ∞, there exists a Schauder frame ( f j , g∗

j )
∞
j=1 of L p(R)

such that ( f j )∞j=1 is a sequence of translations of a single non-negative function. We
obtain this result by first proving that if X is any separable Banach space with the
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bounded approximation property and D ⊆ X has dense span in X then there exists a
Schauder frame for X whose vectors are elements of D.

2 A positive Schauder basis for L2(R)

Given a separable infinite dimensional Banach space X , a sequence of vectors (x j )∞j=1
in X is called a Schauder basis of X if for all x ∈ X there exists a unique sequence of
scalars (a j )

∞
j=1 such that

x =
∞∑

j=1

a j x j . (2)

A Schauder basis (x j )∞j=1 is called unconditional if the series in (2) converges in every
order. If (x j )∞j=1 is a Schauder basis then there exists a unique sequence of bounded
linear functionals (x∗

j )
∞
j=1 called the biorthogonal functionals of (x j )∞j=1 such that

x∗
j (x j ) = 1 for all j ∈ N and x∗

j (xi ) = 0 for all j �= i . A sequence of vectors is
called basic if it is a Schauder basis for its closed span. A basic sequence (x j ) is called
C-basic for some constant C > 0 if for all m ≤ n we have that

∥∥∥∥∥∥

m∑

j=1

a j x j

∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥

n∑

j=1

a j x j

∥∥∥∥∥∥
for all sequences of scalars (a j )

n
j=1. (3)

It follows from the uniform boundedness principle that every basic sequence is C-
basic for some constant C . The least value C such that a sequence (x j ) is C-basic is
called the basis constant of (x j ).

We will be interested in bases of L p(R)where each of the basis vectors x j is a non-
negative function.Abasis of L p(R) (ormoregenerally anyBanach space) allowsone to
consider L p(R) as a sequence space via the identification L p(R) � x ↔ (x∗

j (x))
∞
j=1.

In applications, sequences are often easier to work with than functions, and the benefit
of the basis vectors being non-negative is that whenever a sequence of non-negative
numbers represents a function, then that function must be non-negative as well. For
this reason, the study of non-negative coordinate systems in function spaces has seen
recent attention. In particular, non-negative bases have been shown to be useful in non-
negative matrix factorizations in neuro imaging [7] and in modeling mental functions
[6].

Question 9.1 in [21] asked if given 1 ≤ p < ∞, does there exist a Schauder basis
for L p(R) consisting of non-negative functions? This was recently solved for L1(R)

[9], but all other cases remained open. Our goal in this section is to give a procedure
for creating a Schauder basis for L2(R) formed of non-negative functions. We will be
using the terms positive and non-negative interchangeably as the set of non-negative
functions in L p(R) is the positive cone of L p(R) when viewed as a Banach lattice in
the pointwise a.e. ordering.

There does not exist an unconditional positive Schauder basis for L p(R) for any
1 ≤ p < ∞ [21] (see also [9, Theorem 2]). Thus, any positive Schauder basis we
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create must necessarily be conditional, and the property of conditionality will factor
heavily into our construction. The following lemma is our main tool, and it is based
on a classical construction for a conditional Schauder basis for �2 (see for example
pages 235-237 in [1]).

Lemma 1 Let ε > 0 and 1 ≥ c > 0. There exists N ∈ N and a sequence (x j )2Nj=1 in
the positive cone of �2(Z2N ⊕ Z2N ) such that

1. (x j )2Nj=1 is (1 + ε)-basic.

2. The orthogonal projection of (0)2Nj=1 ⊕ ( 1√
N

, c√
N

, 1√
N

, c√
N

...)2Nj=1 onto the span of

(x j )2Nj=1 has norm at most ε.

3. The distance from (0)2Nj=1 ⊕ ( −c√
N

, 1√
N

, −c√
N

, 1√
N

...)2Nj=1 to the span of (x j )
2N
j=1 is at

most ε.

Proof Fix 0 < ε < 1. Let N ∈ N and (a j )
N
j=1 ⊆ (0,∞) be such that

∑N
j=1 ja2j < ε2

and
∑N

j=1 a j > ε−2c−2. We prove that such a sequence exists later in Lemma 2.
Let T1 be the right shift operator in each coordinate of �2(Z2N ⊕ Z2N ). That is, for
(α1, . . . , α2N ) ⊕ (β1, . . . , β2N ) ∈ �2(Z2N ⊕ Z2N ) we have that

T1(α1, α2, ..., α2N ) ⊕ (β1, β2, ..., β2N )

= (α2N , α1, α2, ..., α2N−1) ⊕ (β2N , β1, β2, ..., β2N−1).

Form ∈ N, we let Tm = (T1)m . We let (e j )2Nj=1 be the unit vector basis of �2(Z2N ⊕0)

and ( f j )2Nj=1 be the unit vector basis of �2(0 ⊕ Z2N ). We let x1 ∈ �2(Z2N ⊕ Z2N )

be the vector x1 = e1 + ∑N
j=1 a j e2 j + ∑N

j=1 εa j f2 j and x2 = e2 + εc f1. For all
1 ≤ n < N , we let x2n+1 = T2nx1 and x2n+2 = T2nx2. For 1 ≤ j < N we have that,

x2 j−1 = e2 j−1+
N∑

k=1

ak− j+1e2k+
N∑

k=1

εak− j+1 f2k and x2 j = e2 j +εc f2 j−1, (4)

where k − j + 1 is considered in the set {1, ..., N }modN . It will also be helpful to
express the sequence (x j )2Nj=1 as

x1 = ( 1, a1, 0, a2, 0, a3, ..., aN−1, 0, aN ) ⊕ ( 0, εa1, 0, εa2, 0, ... ),

x2 = ( 0, 1, 0, 0, 0, 0, ... 0, 0 0 ) ⊕ ( εc, 0, 0, 0, 0, ... ),

x3 = ( 0, aN , 1, a1, 0, a2, ..., aN−2, 0, aN−1 ) ⊕ ( 0, εaN , 0, εa1, 0, ... ),

x4 = ( 0, 0, 0, 1, 0, 0, ... 0, 0 0 ) ⊕ ( 0, 0, εc, 0, 0, ... ),

x5 = ( 0, aN−1, 0, aN , 1, a1, ..., aN−3, 0, aN−2 ) ⊕ ( 0, εaN−1, 0, εaN , 0, ... ),

x6 = ( 0, 0, 0, 0, 0, 1, ... 0, 0 0 ) ⊕ ( 0, 0, 0, 0, εc, ... ),
...

...

x2N−3 = ( 0, a3, 0, a4, 0, a5, ... a1, 0, a2 ) ⊕ ( 0, εa3, 0, εa4, 0, ... ),

x2N−2 = ( 0, 0, 0, 0, 0, 0, ... 1, 0, 0 ) ⊕ ( 0, 0, 0, 0, 0, ... ),

x2N−1 = ( 0, a2, 0, a3, 0, a4, ... aN , 1, a1 ) ⊕ ( 0, εa2, 0, εa3, 0, ... ),

x2N = ( 0, 0, 0, 0, 0, 0, ... 0, 0, 1 ) ⊕ ( 0, 0, 0, 0, 0, ... ).
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Let x = ∑N
j=1

1√
N
f2 j−1+∑N

j=1
c√
N
f2 j and y = ∑N

j=1
c√
N
f2 j−1+∑N

j=1
−1√
N
f2 j

We will prove that this sequence (x j )2Nj=1 satisfies:

(a) (x j )2Nj=1 is (1+4ε)-basic.

(b) The orthogonal projection of x onto the span of (x j )2Nj=1 has norm at most 3cε.

(c) The distance from y to the span of (x j )2Nj=1 is at most ε.

We first prove (b). We let Px be the orthogonal projection of x onto the span
of (x j )2Nj=1. As x is uniformly distributed in both the odd coordinates and the even

coordinates, Px will have the form
∑N

j=1 ax2 j−1+∑N
j=1 bx2 j for some a, b ∈ R.

One can check that if a = 0 then ‖Px‖ = 〈x, Px〉1/2 = εc(1+ε2c2)−1/2 < 3εc. We
now assume that a �= 0. Thus, we have the following equality for β = b/a.

‖Px‖ =
〈
x,

∑N
j=1 ax2 j−1+∑N

j=1 bx2 j
〉

∥∥∥
∑N

j=1 ax2 j−1+∑N
j=1 bx2 j

∥∥∥
=max

β∈R

〈
x,

∑N
j=1 x2 j−1+∑N

j=1 βx2 j
〉

∥∥∥
∑N

j=1 x2 j−1+∑N
j=1 βx2 j

∥∥∥
.

By taking the derivative with respect to β, the maximum will be obtained when

d

dβ

〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

〉 ∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
= d

dβ

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

〉
. (5)

Let A = ∑N
j=1 a j . Then we get the following simplified expansion.

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j =
N∑

j=1

e2 j−1+
N∑

j=1

(
β+

N∑

i=1

ai

)
e2 j +

N∑

j=1

εcβ f2 j−1+
N∑

j=1

(
ε

N∑

i=1

ai

)
f2 j

=
N∑

j=1

e2 j−1+
N∑

j=1

(β+A)e2 j +
N∑

j=1

εcβ f2 j−1+
N∑

j=1

εA f2 j .

This gives,

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
= (

N+N (β+A)2+Nε2c2β2+Nε2A2)1/2 , (6)

d

dβ

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
= (

N+N (β+A)2+Nε2c2β2+Nε2A2)−1/2 (
N (β+A)+Nε2c2β

)
,

(7)
〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

〉
= N 1/2εcβ+N 1/2εcA, (8)
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d

dβ

〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

〉
= N 1/2εc. (9)

Substituting the above equalities into Equation (5) gives that

N 1/2εc
(
N+N (β+A)2+Nε2c2β2+Nε2A2

)1/2

= (N 1/2εcβ+N 1/2εcA)(N (β+A)+Nε2c2β)
(
N+N (β+A)2+Nε2c2β2+Nε2A2

)1/2 .

Multiplying both sides by the denominator and dividing by N 3/2εc gives the following.

1+(β+A)2+ε2c2β2+ε2A2 = (β+A)(β+A+ε2c2β)

1+(β+A)2+ε2c2β2+ε2A2 = (β+A)2+ε2c2β2+ε2c2βA

1+ε2A2 = ε2c2βA

Thus, the critical point is at β = 1+ε2A2

ε2c2A
. Hence,

∑N
j=1 x2 j−1+∑N

j=1
1+ε2A2

ε2c2A
x2 j will

be a scalar multiple of the projection Px . We now use (6) to obtain a lower bound for
the following.

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

1+ε2A2

ε2c2A
x2 j

∥∥∥∥∥∥
>

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

ε2A2

ε2c2A
x2 j

∥∥∥∥∥∥

=
∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

c−2Ax2 j

∥∥∥∥∥∥

= (N+N (c−2A+A)2+Nε2c2(c−2A)2+Nε2A2)1/2 by (6)

> N 1/2c−2A by the second term in the sum.

We now use (8) to obtain an upper bound for the following.

〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

1+ε2A2

ε2c2A
x2 j

〉
<

〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

2ε2A2

ε2c2A
x2 j

〉

=
〈
x,

N∑

j=1

x2 j−1+
N∑

j=1

2c−2Ax2 j

〉

= N 1/2εc(2c−2A)+N 1/2εcA by (8)

< 3c−1N 1/2εA.
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We obtain an upper bound on ‖Px‖ by

‖Px‖ = 〈x,∑N
j=1 x2 j−1+∑N

j=1
1+ε2A2

ε2c2A
x2 j 〉

‖∑N
j=1 x2 j−1+∑N

j=1
1+ε2A2

ε2c2A
x2 j‖

<
3c−1N 1/2εA

c−2N 1/2A
= 3cε.

This proves (b). We will now prove (c).
We have that

∥∥∥∥∥∥

⎛

⎝
N∑

j=1

−1

εAN 1/2 x2 j−1+ 1

εN 1/2 x2 j

⎞

⎠−y

∥∥∥∥∥∥
=

∥∥∥∥∥∥

N∑

j=1

−1

εAN 1/2 e2 j−1

∥∥∥∥∥∥

= ε−1A−1

< ε as A =
N∑

j=1

a j > ε−2.

This proves that the distance from y to the span of (x j )2Nj=1 is at most ε and hence
we have proven (c).

We now prove (a). Let 0 ≤ M < N and (b j )
2N
j=1 ∈ �2(Z2N ). We will first prove

that ‖∑2M+1
j=1 b j x j‖ ≤ (1+4ε)‖∑2N

j=1 b j x j‖.
The series

∑2N
j=1 b j x j is expressed in terms of the basis (e j )2Nj=1∪( f j )2Nj=1 by

2N∑

j=1

b j x j =
N∑

j=1

b2 j−1e2 j−1+
N∑

j=1

(
b2 j +

N−1∑

i=0

b2i+1a j−i

)
e2 j +

N∑

j=1

εb2 j c f2 j−1

+
N∑

j=1

(
ε

N−1∑

i=0

b2i+1a j−i

)
f2 j . (10)

The series
∑2M+1

j=1 b j x j is expressed in terms of the basis (e j )2Nj=1∪( f j )2Nj=1 by

2M+1∑

j=1

b j x j =
M+1∑

j=1

b2 j−1e2 j−1+y1,1+y1,2+
M∑

j=1

εb2 j c f2 j−1+y2,1+y2,2. (11)

Where,

y1,1 =
M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j and y1,2 =

N∑

j=M+1

(
M∑

i=0

b2i+1a j−i

)
e2 j
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y2,1 =
M∑

j=1

(
ε

M∑

i=0

b2i+1a j−i

)
f2 j and y2,2 =

N∑

j=M+1

(
ε

M∑

i=0

b2i+1a j−i

)
f2 j .

Note that ∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

2

≥
∥∥∥∥∥∥

N∑

j=1

b2 j−1e2 j−1

∥∥∥∥∥∥

2

=
N∑

j=1

b22 j−1. (12)

We first show that ‖y1,2‖ < ε‖∑2N
j=1 b j x j‖.

‖y1,2‖2 =
∥∥∥∥∥∥

N∑

j=M+1

(
M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥

2

=
N∑

j=M+1

∣∣∣∣∣

M∑

i=0

b2i+1a j−i

∣∣∣∣∣

2

≤
N∑

j=M+1

(
M∑

i=0

b22i+1

) (
M∑

i=0

a2j−i

)
by Cauchy-Schwartz

≤
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

2
N∑

j=M+1

M∑

i=0

a2j−i by (12)

≤
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

2
N∑

j=1

ja2j < ε2

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

2

Thus we have that,

‖y1,2‖ < ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
. (13)

The same argument as above gives the following inequality.

∥∥∥∥∥∥

M∑

j=1

(
N−1∑

i=M+1

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
< ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
(14)

We can now estimate ‖y1,1‖.

‖y1,1‖ =
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥

<

∥∥∥∥∥∥

M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
−

∥∥∥∥∥∥

M∑

j=1

(
N−1∑

i=M+1

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
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+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
by (14)

≤
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N−1∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

=
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.

Thus, we have that

‖y1,1‖ <

∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
. (15)

The same technique for estimating y1,1 and y1,2 gives that

‖y2,1‖ <

∥∥∥∥∥∥

M∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
and ‖y2,2‖ < ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.

(16)

We consider (11) with the inequalities (13), (15), and (16) to get

∥∥∥∥∥∥

2M+1∑

j=1

b j x j

∥∥∥∥∥∥
<

∥∥∥∥∥∥

M+1∑

j=1

b2 j−1e2 j−1+
M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

+
M∑

j=1

εb2 j c f2 j−1+
M∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

N∑

j=1

b2 j−1e2 j−1+
N∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

+
N∑

j=1

εb2 j c f2 j−1+
N∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

=
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.
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This proves for all 0 ≤ M < N that ‖∑2M+1
j=1 b j x j‖ ≤ (1+4ε)‖∑2N

j=1 b j x j‖.
The same argument proves that also ‖∑2M

j=1 b j x j‖ ≤ (1+4ε)‖∑2N
j=1 b j x j‖. Thus,

the sequence (x j )2Nj=1 has basic constant (1+4ε) and we have proven (a). ��
Before presenting our main theorem, we discuss the central idea behind our con-

struction and its relation to the construction of Johnson and Schechtman [9]. The
conditional Schauder basis for L1(R) constructed by Johnson and Schechtman can be
formed inductively where at each step they break up a Haar vector f into a positive
part f + and a negative part f − then append a vector 2 · 1(n,n+1) to both parts where
(n, n+1) is disjoint from the support of all vectors created so far in the induction pro-
cess. The vectors f + +2 ·1(n,n+1) and f − +2 ·1(n,n+1) are then both positive vectors.
One can then recover the vector f by f = ( f ++2·1(n,n+1))−( f −+2·1(n,n+1)). Fur-
thermore, the zero vector is the closest vector to f ++ f − in the span of f ++2·1(n,n+1)
and f − + 2 · 1(n,n+1). This idea can be used to build a Schauder basis for L1(R), but
it fails for L p(R) for all 1 < p < ∞.

Our procedure for constructing a positive Schauder basis for L2(R) is also con-
structed inductively.However, at each step instead of breaking up a vector into 2 pieces,
we break it up into many pieces. That is, given ε > 0 and f ∈ L2(R) we choose a
suitably large N ∈ N, and then we break up the positive part of f into N pieces
( f +

n )Nn=1 with the same distribution and the negative part of f into N pieces ( f −
n )Nn=1

with the same distribution. Here we mean that two functions g, h : R → R have the
same distribution if for all J ⊆ R we have that λ(g−1(J )) = λ(h−1(J )) where λ is
Lebesgue measure. Given ( f +

n )Nn=1 and ( f −
n )Nn=1, we use Lemma 1 to create a positive

highly conditional basic sequence (xn)2Nn=1 with disjoint support from f and append
(x2n−1)

N
n=1 onto ( f −

n )Nn=1 and append (x2n)Nn=1 onto ( f +
n )Nn=1. The vectors f +

n + x2n
and f −

n + x2n−1 are then both positive vectors for all n ∈ N. The conditionality of
(xn)2Nn=1 allows for f to be within ε of (

∑N
n=1 f +

n + x2n) − (
∑N

n=1 f −
n + x2n−1) and

for the orthogonal projection of f + + f − onto span1≤n≤N { f +
n + x2n, f −

n + x2n−1}
to have norm smaller than ε.

Theorem 1 For all ε > 0, there exists a positive Schauder basis for L2(R) with basis
constant at most 1 + ε.

Proof Let 0 < ε < 1/2 and ε j ↘ 0 such that
∑

ε j < ε and
∏

(1 + ε j ) < 1 + ε.
Let (h j )

∞
j=1 be a Schauder basis for L2(R) which is an enumeration of the union of

the Haar bases for L2([n, n + 1]) for all n ∈ Z. We assume that h1 = 1[0,1]. We will
inductively construct a sequence of nonnegative vectors (z j )∞j=1 and an increasing
sequence of integers (N j )

∞
j=1 such that for all n ∈ N,

(a) zn is piecewise constant, i.e., zn is a finite linear combination of characteristic
functions of intervals in R.

(b) (z j )
Nn
j=1 is

∏
j≤n(1 + ε j ) basic.

(c) dist(hn, span j≤Nn (z j )) < εn .

We first claim that (z j )∞j=1 will be a Schauder basis for L2(R) with basis constant
at most 1 + ε. Indeed, by (b) the sequence (z j )∞j=1 is

∏
(1 + ε j ) < (1 + ε) basic. By

(c) the span of (z j )∞j=1 contains a perturbation of an orthonormal basis and hence has
dense span. Thus all that remains is to construct (z j ) by induction.
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For the base case we take z1 = h1 = 1[0,1] and N1 = 1. Thus all three conditions
are trivially satisfied. Now let k ∈ N and assume that (z j )

Nk
j=1 are given to satisfy

the induction hypothesis. Without loss of generality we may assume that hk+1 is not
contained in the span of (z j )

Nk
j=1. This is because if hk+1 ∈ span j≤Nk (z j ) we could

just take Nk+1 = Nk + 1 and zNk+1 to be the indicator function of an interval with
support disjoint from the support of z j for all 1 ≤ j ≤ Nk . This would trivially satisfy
(a), (b), and (c). Thus, we may assume that P(span j≤Nk (z j ))⊥hk+1 �= 0. If y ∈ L2(R)

we write y = y+ − y− where y+ and y− are non-negative and disjoint. Let y be a
multiple of P(span j≤Nk (z j ))⊥hk+1 such that ‖y−‖ = 1 and c := ‖y+‖ ≤ 1. Note that

y is piecewise constant as hk+1 and (z j )
Nk
j=1 are all piecewise constant. If c = 0 set

zk+1 = y− and Nk+1 = Nk + 1, else we proceed as follows:
Let ε′ > 0. By Lemma 1 there exists N ∈ N and (x j )2Nj=1 in the positive cone of

�2(Z2N ⊕ Z2N ) such that

1. (x j )2Nj=1 is (1 + ε′)-basic.
2. The orthogonal projection of (0, ..., 0) ⊕ ( 1√

N
, c√

N
, ..., 1√

N
, c√

N
) onto the span of

(x j )2Nj=1 has norm at most ε′.
3. The distance from (0, ..., 0) ⊕ ( c√

N
, −1√

N
, ..., c√

N
, −1√

N
) to the span of (x j )2Nj=1 is at

most ε′.
Let Xk be the span of y and (z j )

Nk
j=1. Note that Xk is a space of simple functionswith

finitely many discontinuities. We claim that there exists a sequence of finite unions of
intervals (G j )

2N
j=1 in R such that

(i) The sequence (G j )
2N
j=1 is pairwise disjoint.

(ii) ∪N
j=1G2 j−1 is the support of y+ and ∪N

j=1G2 j is the support of y−.
(iii) For all x ∈ Xk , the sequence of functions (x |G2 j−1)

N
j=1 all have the same distri-

bution.
(iv) For all x ∈ Xk , the sequence of functions (x |G2 j )

N
j=1 all have the same distribu-

tion.

To prove this, we let (E j )
M1
j=1 be a partition of the support of y

+ into intervals such
that for all 1 ≤ j ≤ M1 both y and zi are constant on E j for all 1 ≤ i ≤ Nk . We know

by (a) that such a partition exists. Likewise, let (Fj )
M0
j=1 be a partition of the support

of y− into intervals such that for all 1 ≤ j ≤ M0 both y and zi are constant on Fj for
all 1 ≤ i ≤ Nk . For all 1 ≤ j ≤ M1 let (Ei, j )

N
i=1 be a partition of E j into intervals of

equal length, and for all 1 ≤ j ≤ M0 let (Fi, j )Ni=1 be a partition of Fj into intervals of

equal length. For all 1 ≤ i ≤ N we let G2i−1 = ∪M1
j=1Ei, j and let G2i = ∪M0

j=1Fi, j .

By construction, (Gi )
2N
i=1 satisfies (i),(ii),(iii), and (iv).

Let (Hj )
2N
j=1 be a sequence of unit length intervals in R with pairwise disjoint

supportwhich is disjoint from the support of y and the support of z j for all 1 ≤ j ≤ Nk .
We now define a map Ψ : �2(Z2N ⊕ Z2N ) → L2(R) by

Ψ (α1, ..., α2N , β1, ..., β2N ) =
N∑

j=1

c−1N 1/2β2 j−11G2 j−1 y
+ +

N∑

j=1

N 1/2β2 j1G2 j y
−
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+
2N∑

j=1

α j1Hj .

By (i),(ii),(iii), and that ‖y+‖ = cwe have that ‖1G2 j−1 y
+‖ = cN−1/2 for all 1 ≤ j ≤

N . Likewise, as ‖y−‖ = 1 we have that ‖1G2 j y
−‖ = N−1/2 for all 1 ≤ j ≤ N . Thus,

Ψ is an isometric embedding and maps positive vectors in �2(Z2N ⊕Z2N ) to positive
vectors in L2(R).We let Nk+1 = Nk+2N and let zNk+ j = Ψ (x j ) for all 1 ≤ j ≤ 2N .
As y is piecewise constant, Hi is an interval, and Gi is a finite union of intervals for
all 1 ≤ i ≤ 2N , we have that z j is piecewise constant for all Nk < j ≤ Nk+1. Thus
we have satisfied (a).

Note that Ψ ((0, ..., 0) ⊕ ( c√
N

, −1√
N

, ..., c√
N

, −1√
N

)) = y, thus by (3) the distance

from y to the span of (z j )
Nk+1
j=Nk+1 is at most ε′ which proves (c) if ε′ is small enough.

Let x ∈ span j≤Nk z j . Let (e j )
2N
j=1 denote the unit vector basis for the second coor-

dinate of �2(Z2N ⊕Z2N ). Then by (iii), we have that 〈Ψ (e2 j−1), x〉 = 〈Ψ (e2i−1), x〉
for all 1 ≤ i, j ≤ N , and by (iv) we have that 〈Ψ (e2 j ), x〉 = 〈Ψ (e2i ), x〉 for
all 1 ≤ i, j ≤ N . We have that x is orthogonal to y and y = c√

N
Ψ (e1) −

1√
N

Ψ (e2)+...+ c√
N

Ψ (e2N−1)− 1√
N

Ψ (e2N ). Thus the orthogonal projection of x onto

Ψ (�2(Z2N⊕Z2N )) is amultiple ofΨ (e1)+cΨ (e2)+...+Ψ (e2N−1)+cΨ (e2N ). Hence
by (2) the orthogonal projection of x onto spanNk< j≤Nk+1 z j = span1≤ j≤2NΨ (x j )

has norm at most 2ε′‖x‖. The sequence (z j )
Nk
j=1 is

∏
j≤k(1+ε j ) basic and (z j )

Nk+1
j=Nk+1

is (1 + ε′) basic. The inner product between a unit vector in span j≤Nk z j and a unit

vector in spanNk< j≤Nk+1 z j is at most 2ε′. Thus, if ε′ is small enough then (z j )
Nk+1
j=1 is∏

j≤k+1(1 + ε j ) basic which proves (b). This completes the construction of (z j ) by
induction. ��

Remark 1 Similar to [9], one can use classification theorems to extend the above result
to all separable L2(μ). See, for example, [11] or Section 2.7 of [12]. That is, if L2(μ)

is separable then for all ε > 0 there exists a positive Schauder basis for L2(μ) with
basis constant at most 1 + ε.

3 A basic sequence in Lp(R) for 1 < p < ∞.

Our method in Sect. 2 repeatedly makes use of orthogonal projections onto subspaces
of L2(R). This prevents us from extending the construction to L p(R) for p �= 2.
However, we are able to obtain the result for large subspaces of L p(R). Indeed, for
ε > 0 and 1 < p < ∞, we will construct a positive (2 + ε)-basic sequence (z j )∞j=1
in L p(R) such that L p(R) is isomorphic to a subspace of the closed span of (z j )∞j=1.

Lemma 2 For all ε > 0 and 1 < p < ∞ there exists N ∈ N and an ↘ 0 such that∑N
n=1 an > ε−2 and

∑N
n=1(

∑N
j=n a

q
j )

p/q < ε p where 1/p + 1/q = 1.
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Proof We consider the function f : [1,∞) → R given by f (x) = ((x + 1) ln(x +
1))−1. Then,

∫ ∞

1
f (x) dx =

∫ ∞

1
((x + 1) ln(x + 1))−1dx = ∞.

We also have the following upper bound,

∫ ∞

1

(∫ ∞

x
f (t)q dt

)p/q

dx =
∫ ∞

1

(∫ ∞

x
((t + 1) ln(t + 1))−q dt

)p/q

dx

≤
∫ ∞

1

(∫ ∞

x
(t + 1)−q dt

)p/q

ln(x + 1)−p dx as ln(t + 1)−q ≤ ln(x + 1)−q

= (q − 1)−p/q
∫ ∞

1
(x + 1)(1−q)p/q ln(x + 1)−p dx

= (q − 1)−p/q
∫ ∞

1
(x + 1)−1 ln(x + 1)−p dx as p−1+ q−1 = 1

= (q − 1)−p/q(p − 1)−1 ln(2)1−p.

As f is a decreasing function, we have that
∑∞

n=1 f (n) = ∞ and∑∞
n=1(

∑∞
j=n f ( j)q)p/q < ∞. Hence, for all ε > 0 we may choose N ∈ N and

an ↘ 0 such that
∑N

n=1 an > ε−2 and
∑N

n=1(
∑N

j=n a
q
j )

p/q < ε p. In particular, for
all ε > 0 we may choose

an =
(
(n + 2) ln(n + 2)

)−1(
(q − 1)−p/q(p − 1)−1 ln(2)1−p

)−1/p
ε,

and then choose N ∈ N such that
∑N

n=1 an > ε−2. ��
The following lemma is an extension of Lemma 1 to �p(Z2N ⊕ Z2N ) where 1 <

p < ∞, and the proof will follow along the same lines. In the previous section we
constructed a positive Schauder basis for all of L2(R) and this required a variable
0 < c ≤ 1 in Lemma 1. For p �= 2, we will only be constructing a positive Schauder
basis for a subspace of L p(R), and for this reason we will no longer need the variable
c.

Lemma 3 Let ε > 0 and 1 < p, q < ∞ with 1/p + 1/q = 1. There exists N ∈ N

and a sequence (x j )2Nj=1 in the positive cone of �p(Z2N ⊕ Z2N ) such that

1. (x j )2Nj=1 is (1 + ε)-basic.

2. If f ∗ = (0)2Nj=1 ⊕ (N−1/q)2Nj=1 ∈ �q(Z2N ⊕ Z2N ) then | f ∗(x)| ≤ ε‖x‖ for all x

in the span of (x j )2Nj=1.

3. The distance from (0)2Nj=1 ⊕ ((−1) j N−1/p) to the span of (x j )2Nj=1 is at most ε.
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Proof The proof follows the same strategy as Lemma 1. Fix 0 < ε < 1. By Lemma
2, there exists N ∈ N and (a j )

N
j=1 ⊆ (0,∞) such that

N∑

n=1

an > ε−2 and
N∑

n=1

⎛

⎝
N∑

j=n

aqj

⎞

⎠
p/q

< ε p. (17)

Consider the space �p(Z2N ⊕Z2N ). Let T1 be the cyclic right shift operator on this
space. That is, for (α1, . . . , α2N ) ⊕ (β1, . . . , β2N ) ∈ �p(Z2N ⊕ Z2N ) let

T1(α1, α2, ..., α2N ) ⊕ (β1, β2, ..., β2N )

= (α2N , α1, α2, ..., α2N−1) ⊕ (β2N , β1, β2, ..., β2N−1).

Form ∈ N, we let Tm = (T1)m . We let (e j )2Nj=1 be the unit vector basis of �p(Z2N )⊕0

and ( f j )2Nj=1 be the unit vector basis of 0⊕�p(Z2N ).We denote (e∗
j )
2N
j=1 and ( f ∗

j )
2N
j=1 to

be the biorthogonal functionals to (e j )2Nj=1 and ( f j )2Nj=1. We let x1 ∈ �p(Z2N ⊕ Z2N )

be the vector x1 = e1 + ∑N
j=1 a j e2 j + ∑N

j=1 εa j f2 j and x2 = e2 + ε f1. For all
1 ≤ n < N , we let x2n+1 = T2nx1 and x2n+2 = T2nx2. That is,

x1 = ( 1, a1, 0, a2, 0, a3, ..., aN−1, 0, aN ) ⊕ ( 0, εa1, 0, εa2, 0, ... ),

x2 = ( 0, 1, 0, 0, 0, 0, ... 0, 0 0 ) ⊕ ( ε, 0, 0, 0, 0, ... ),

x3 = ( 0, aN , 1, a1, 0, a2, ..., aN−2, 0, aN−1 ) ⊕ ( 0, εaN , 0, εa1, 0, ... ),

x4 = ( 0, 0, 0, 1, 0, 0, ... 0, 0 0 ) ⊕ ( 0, 0, ε, 0, 0, ... ),

x5 = ( 0, aN−1, 0, aN , 1, a1, ..., aN−3, 0, aN−2 ) ⊕ ( 0, εaN−1, 0, εaN , 0, ... ),

x6 = ( 0, 0, 0, 0, 0, 1, ... 0, 0 0 ) ⊕ ( 0, 0, 0, 0, ε, ... ).
...

...

x2N−3 = ( 0, a3, 0, a4, 0, a5, ... a1, 0, a2 ) ⊕ ( 0, εa3, 0, εa4, 0, ... )

x2N−2 = ( 0, 0, 0, 0, 0, 0, ... 1, 0, 0 ) ⊕ ( 0, 0, 0, 0, 0, ... )

x2N−1 = ( 0, a2, 0, a3, 0, a4, ... aN , 1, a1 ) ⊕ ( 0, εa2, 0, εa3, 0, ... )

x2N = ( 0, 0, 0, 0, 0, 0, ... 0, 0, 1 ) ⊕ ( 0, 0, 0, 0, 0, ... )

Let f ∗ = ∑2N
j=1 N

−1/q f ∗
j and y = ∑2N

j=1(−1) j N−1/p f j We will prove that the

sequence (x j )2Nj=1 satisfies:

(a) (x j )2Nj=1 is (1+4ε)-basic.

(b) f ∗(z) ≤ ε‖z‖ for all z in the span of (x j )2Nj=1.

(c) The distance from y to the span of (x j )2Nj=1 is at most ε.

We first prove (b). As the unit ball of �p(Z2N ⊕Z2N ) is strictly convex, there exists
a unique unit norm vector z in the span of (x j )2Nj=1 so that f ∗(z) is maximal. As f ∗

is uniformly distributed on 0⊕Z2N , z will have the form
∑N

j=1 ax2 j−1+∑N
j=1 bx2 j

for some a, b ∈ R. One can check that if a = 0 then f ∗(z) = ε(1+ε p)−1/p < ε. We
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now assume that a �= 0. Thus,

f ∗(z) =
f ∗

(∑N
j=1 ax2 j−1+∑N

j=1 bx2 j
)

∥∥∥
∑N

j=1 ax2 j−1+∑N
j=1 bx2 j

∥∥∥
= max

β∈R

∣∣∣ f ∗
(∑N

j=1 x2 j−1+∑N
j=1 βx2 j

)∣∣∣
∥∥∥
∑N

j=1 x2 j−1+∑N
j=1 βx2 j

∥∥∥

Let A = ∑N
j=1 a j . Then we get the following simplified expansion.

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j =
N∑

j=1

e2 j−1+
N∑

j=1

(
β+

N∑

i=1

ai

)
e2 j +

N∑

j=1

εβ f2 j−1+
N∑

j=1

(
ε

N∑

i=1

ai

)
f2 j

=
N∑

j=1

e2 j−1+
N∑

j=1

(β+A)e2 j +
N∑

j=1

εβ f2 j−1+
N∑

j=1

εA f2 j .

This gives the following two equalities,

∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
= (

N+N |β+A|p+Nε p|β|p+Nε p Ap)1/p , (18)

f ∗
⎛

⎝
N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

⎞

⎠ = N 1/pεβ+N 1/pεA. (19)

Let β ∈ R such that

f ∗(z) =
∣∣∣ f ∗

(∑N
j=1 x2 j−1+∑N

j=1 βx2 j
)∣∣∣

∥∥∥
∑N

j=1 x2 j−1+∑N
j=1 βx2 j

∥∥∥
.

For λ := β/A, we have the following two results.
∥∥∥∥∥∥

N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

∥∥∥∥∥∥
= (

N+N |λA+A|p+Nε p(|λ|A)p+Nε p Ap)1/p >
(
N |λA+A|p)1/p

= |1+λ|AN1/p,

f ∗
⎛

⎝
N∑

j=1

x2 j−1+
N∑

j=1

βx2 j

⎞

⎠ = N1/pελA+N1/pεA = ε(1+λ)AN1/p .

If λ = −1 then by the above equality we would have f ∗(
∑N

j=1 x2 j−1+∑N
j=1 βx2 j ) = 0. Otherwise, we have that,

| f ∗(z)| < ε|1+λ|AN 1/p/(|1+λ|AN 1/p) = ε.
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Thus, we have proven (b). We will now prove (c).
Recall that y = ∑2N

j=1(−1) j N−1/p f j . We have that

∥∥∥∥∥∥

⎛

⎝
N∑

j=1

1

εAN 1/p x2 j−1− 1

εN 1/p x2 j

⎞

⎠−y

∥∥∥∥∥∥
=

∥∥∥∥∥∥

N∑

j=1

1

εAN 1/p e2 j−1

∥∥∥∥∥∥

= ε−1A−1

< ε as A =
N∑

j=1

a j > ε−2.

This proves that the distance from y to the span of (x j )2Nj=1 is at most ε and hence
we have proven (c).

We now prove (a). Let 0 ≤ M < N and (b j )
2N
j=1 ∈ �p(Z2N ). We will prove that

‖∑2M+1
j=1 b j x j‖ ≤ (1+4ε)‖∑2N

j=1 b j x j‖.
The series

∑2N
j=1 b j x j is expressed in terms of the basis (e j )2Nj=1∪( f j )2Nj=1 by

2N∑

j=1

b j x j =
N∑

j=1

b2 j−1e2 j−1+
N∑

j=1

(
b2 j +

N−1∑

i=0

b2i+1a j−i

)
e2 j +

N∑

j=1

εb2 j f2 j−1

+
N∑

j=1

(
ε

N−1∑

i=0

b2i+1a j−i

)
f2 j . (20)

The series
∑2M+1

j=1 b j x j is expressed in terms of the basis (e j )2Nj=1∪( f j )2Nj=1 by

2M+1∑

j=1

b j x j =
M+1∑

j=1

b2 j−1e2 j−1+y1,1+y1,2+
M∑

j=1

εb2 j f2 j−1+y2,1+y2,2. (21)

Where,

y1,1 =
M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j and y1,2 =

N∑

j=M+1

(
M∑

i=0

b2i+1a j−i

)
e2 j ,

y2,1 =
M∑

j=1

(
ε

M∑

i=0

b2i+1a j−i

)
f2 j and y2,2 =

N∑

j=M+1

(
ε

M∑

i=0

b2i+1a j−i

)
f2 j .

Note that ∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

p

≥
∥∥∥∥∥∥

N∑

j=1

b2 j−1e2 j−1

∥∥∥∥∥∥

p

=
N∑

j=1

|b2 j−1|p. (22)
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We first show that ‖y1,2‖ < ε‖∑2N
j=1 b j x j‖.

‖y1,2‖p =
∥∥∥∥∥∥

N∑

j=M+1

(
M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥

p

=
N∑

j=M+1

∣∣∣∣∣

M∑

i=0

b2i+1a j−i

∣∣∣∣∣

p

≤
N∑

j=M+1

(
M∑

i=0

|b2i+1|p
)(

M∑

i=0

aqj−i

)p/q

by Hölder’s Inequality,

≤
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

p
N∑

j=M+1

(
M∑

i=0

aqj−i

)p/q

by (22),

≤
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

p
N∑

j=1

⎛

⎝
N∑

i= j

aqi

⎞

⎠
p/q

<

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

p

ε p by (17).

Thus we have that,

‖y1,2‖ < ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
. (23)

The same argument as above gives the following inequality.

∥∥∥∥∥∥

M∑

j=1

(
N−1∑

i=M+1

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
< ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
. (24)

We can now estimate ‖y1,1‖.

‖y1,1‖ =
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥

<

∥∥∥∥∥∥

M∑

j=1

(
b2 j +

M∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
−

∥∥∥∥∥∥

M∑

j=1

(
N−1∑

i=M+1

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥

+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
by (24)
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≤
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N−1∑

i=0

b2i+1a j−i

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

=
∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.

Thus, we have that

‖y1,1‖ <

∥∥∥∥∥∥

M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
. (25)

The same technique for estimating y1,1 and y1,2 gives that

‖y2,1‖ <

∥∥∥∥∥∥

M∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
and ‖y2,2‖ < ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.

(26)
We consider (21) with the inequalities (23), (25), and (26) to get

∥∥∥∥∥∥

2M+1∑

j=1

b j x j

∥∥∥∥∥∥
<

∥∥∥∥∥∥

M+1∑

j=1

b2 j−1e2 j−1+
M∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

+
M∑

j=1

εb2 j f2 j−1+
M∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

N∑

j=1

b2 j−1e2 j−1+
N∑

j=1

(
b2 j +

N∑

i=1

b2 j−2i−1ai

)
e2 j

+
N∑

j=1

εb2 j f2 j−1+
N∑

j=1

(
ε

N∑

i=1

b2 j−2i−1ai

)
f2 j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥

=
∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
+4ε

∥∥∥∥∥∥

2N∑

j=1

b j x j

∥∥∥∥∥∥
.

This proves for all 0 ≤ M < N that ‖∑2M+1
j=1 b j x j‖ ≤ (1+4ε)‖∑2N

j=1 b j x j‖.
The same argument proves that also ‖∑2M

j=1 b j x j‖ ≤ (1+4ε)‖∑2N
j=1 b j x j‖. Thus,

the sequence (x j )2Nj=1 has basic constant (1+4ε) and we have proven (a). ��
We now show how the conditional positive basic sequence constructed in Lemma

3 can be inductively used to build a basic sequence in L p(R). We will construct a
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positive basic sequence in L p(R) which contains a perturbation of a Haar type system
in L p([0, 1]). Recall that a sequence of vectors (g j )

∞
j=0 in L p([0, 1]) is called a Haar

type system if there is a sequence of partitions ({E j,n}2n−1
j=0 )∞n=0 of [0, 1] such that

E0,0 = [0, 1] and g0 = 1[0,1] and for all n ∈ N and 0 ≤ j ≤ 2n−1 − 1 we have
that {E2 j,n, E2 j+1,n} is a partition of E j,n−1 with λ(E2 j,n) = λ(E2 j+1,n) = 2−n

and g2n−1+ j = 2(n−1)/p(1E2 j ,n − 1E2 j+1,n ). Note that the Haar basis for L p([0, 1]) is
a Haar type system, and every Haar type system in L p([0, 1]) is 1-equivalent to the
Haar basis. Thus, if (g j )

∞
j=0 is a Haar type system in L p([0, 1]) then the closed span of

(g j )
∞
j=0 is isometric to L p([0, 1]). We will denote the usual Haar basis for L p([0, 1])

by (h j )
∞
j=0, and denote its dual sequence by (h∗

j )
∞
j=0 (which is just the Haar basis for

Lq([0, 1]) for 1/p + 1/q = 1.)

Theorem 2 For all 1 < p < ∞, there exists a positive Schauder basic sequence
(z j )∞j=0 in L p(R) such that L p(R) is isomorphic to a subspace of the closed span of
(z j )∞j=0.

Proof Let 0 < ε < 1 and ε j ↘ 0 such that
∑

2ε j < ε and
∏

(1+ε j ) < 1+ε.Wewill
inductively construct a sequence of non-negative vectors (z j )∞j=0 in L p(R), increasing
sequences of integers (Mj )

∞
j=0 and (N j )

∞
j=0, and a Haar type system (g j )

∞
j=0 in

L p([0, 1]) such that M0 = N0 = 0, z0 = g0 = 1[0,1], and for all n ∈ N we have that

(a) gn ∈ span(h j )
Mn
j=Mn−1+1.

(b) span(z j |[0,1])Nn
j=0 ⊆ span(h j )

Mn
j=0 and each of the functions (z j |[0,1]c)Nn−1

j=0 have

disjoint support from each of the functions (z j |[0,1]c )Nn
j=Nn−1+1.

(c) If PMn−1 is the basis projection onto span(h j )
Mn−1
j=0 then ‖PMn−1x‖ ≤ εn‖x‖ for

all x ∈ span(z j )
Nn
j=Nn−1+1.

(d) (z j )
Nn
j=Nn−1+1 is (1 + ε)−basic,

(e) dist(gn, spanNn−1< j≤Nn (z j )) < εn .

Before proving that this is possible, we show that building such a sequence (z j )∞j=0
will prove our theorem. By (e), the span of (z j )∞j=0 contains a perturbation of a Haar
type system for L p([0, 1]) and hence L p([0, 1]) is isomorphic to a subspace of the
closed span of (z j )∞j=0. We now show that (z j )∞j=0 is a basic sequence. Let x =∑∞

j=0 a j z j ∈ span(z j )∞j=0 and let N ∈ N. We will prove that ‖∑∞
j=0 a j z j‖ ≥

1
2(1+ε)2

‖∑N
j=0 a j z j‖.

We denote x0 = a0z0 and xn = ∑Nn
j=Nn−1+1 a j z j for all n ∈ N. We denote y0 = x0

and yn = xn − PMn−1xn for all n ∈ N. By (c), we have that ‖yn − xn‖ ≤ εn‖xn‖.
We have by (b) that (yn|[0,1])∞n=1 is a block sequence of the Haar basis and that
(yn|[0,1]c )∞n=1 is a sequence of vectors with disjoint support. Thus (yn)∞n=0 is 1-basic
as the Haar sequence is 1-basic. As (xn)∞n=0 is a perturbation of (yn)∞n=0, we have that
(xn)∞n=0 is (1 + ε)-basic. Let K ∈ N ∪ {0} such that NK < N ≤ NK+1. Thus,

‖x‖ ≥ (1 + ε)−1

∥∥∥∥∥

K∑

n=0

xn

∥∥∥∥∥ and ‖x‖ ≥ (1 + ε)−1‖xK+1‖.
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By (d), we have that ‖xK+1‖ ≥ (1 + ε)−1‖∑N
j=NK+1 a j z j‖. Thus, we have that

∥∥∥∥∥∥

∞∑

j=0

a j z j

∥∥∥∥∥∥
≥ (1 + ε)−1 max

(∥∥∥∥∥

K∑

n=0

xn

∥∥∥∥∥ , ‖xK+1‖
)

≥ (1 + ε)−1 max

⎛

⎝
∥∥∥∥∥

K∑

n=0

xn

∥∥∥∥∥ , (1 + ε)−1

∥∥∥∥∥∥

N∑

j=NK+1

a j z j

∥∥∥∥∥∥

⎞

⎠

≥ 2−1(1 + ε)−2

∥∥∥∥∥∥

K∑

n=0

xn +
N∑

j=NK+1

a j z j

∥∥∥∥∥∥

= 2−1(1 + ε)−2

∥∥∥∥∥∥

N∑

j=0

a j z j

∥∥∥∥∥∥
.

This proves that (z j )∞j=0 is 2(1+ε)2-basic. Thus all that remains is to construct (z j )∞j=0
and (g j )

∞
j=0 by induction.

For the base case we take z0 = g0 = 1[0,1], M0 = N0 = 0, M−1 = N−1 = −1,
and we formally define P−1 = 0 as the projection onto the zero vector. Thus all five
conditions are trivially satisfied for n = 0. Now let k ∈ N0 and assume that (gm)km=0

and (zm)
Nk
m=0 have been chosen to satisfy conditions (a),(b),(c),(d), and (e). For each

m ∈ N we let m = 2nm−1 + jm where nm ∈ N and 0 ≤ jm < 2nm−1. For 1 ≤ m ≤ k,
we denote E2 jm ,nm ⊆ [0, 1] to be the support of g+

m and E2 jm+1,nm ⊆ [0, 1] to be the
support of g−

m . Being an initial segment of a Haar type system, E2 jm ,nm ∪E2 jm+1,nm =
E jm ,nm−1 for 1 ≤ m ≤ k, and for the induction we must find an appropriate partition
of E jk+1,nk+1−1. Note that if jk + 1 < 2nk−1 then jk+1 = jk + 1 and nk+1 = nk ; if
jk + 1 = 2nk−1 then jk+1 = 0 and nk+1 = nk + 1.
As (gm)km=0 is contained in the span of the initial segment of the Haar basis

(h j )
Mk
j=0, we may partition E jk+1,nk+1−1 into two sets of equal measure E2 jk+1,nk+1

and E2 jk+1+1,nk+1 such that both sets are a finite union of disjoint dyadic intervals and

for all x ∈ span(h j )
Mk
j=0, the distribution of x |E2 jk+1,nk+1

is the same as the distribu-

tion of x |E2 jk+1+1,nk+1
. We let gk+1 = 2(nk+1−1)/p(1E2 jk+1,nk+1

− 1E2 jk+1+1,nk+1
). As

the support of g+
k+1 and the support of g−

k+1 are both finite unions of disjoint dyadic
intervals, we have that gk+1 ∈ span(h j )

∞
j=1. Let 0 ≤ m ≤ Mk . As the distribu-

tion of hm |E2 jk+1,nk+1
is the same as the distribution of hm |E2 jk+1+1,nk+1

, we have that
h∗
m(gk+1) = 0. Thus, gk+1 ∈ span(h j )

∞
j=Mk+1.

Thus, we have the following three properties.

(α) (g j )
k+1
j=0 is the initial segment of a Haar type system in L p([0, 1]),

(β) gk+1 ∈ span(h j )
∞
j=Mk+1,

(γ ) For all x ∈ span(h j )
Mk
j=0, the distribution of x |supp(g+

k+1)
is the same as the

distribution of x |supp(g−
k+1)

.
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By Lemma 3 there exists N ∈ N and (x j )2Nj=1 in the positive cone of �p(Z2N ⊕Z2N )

such that

1. (x j )2Nj=1 is (1 + ε)-basic.

2. If f = (0)2Nj=1 ⊕ ((2N )−1/q)2Nj=1 ∈ �q(Z2N ) ⊕ �q(Z2N ) then (2N )1/q | f (x)| ≤
εk+1
Mk+1‖x‖ for all x in the span of (x j )2Nj=1.

3. The distance from (0)2Nj=1 ⊕ ((−1) j (2N )−1/p) to the span of (x j )2Nj=1 is at most
εk+1.

As in the proof of Theorem 1, there exists a sequence of finite unions of disjoint
dyadic intervals (G j )

2N
j=1 in [0, 1] such that

(i) The sequence (G j )
2N
j=1 is pairwise disjoint and λ(G j ) = λ(Gi ) for all i, j .

(ii) ∪N
j=1G2 j−1 is the support of g

+
k+1 and ∪N

j=1G2 j is the support of g
−
k+1.

(iii) For all x ∈ span(h j )
Mk
j=0, the sequence of functions (x |G j )

2N
j=1 all have the same

distribution.

Let (Hj )
2N
j=1 be a sequence of unit length intervals inR\[0, 1]with pairwise disjoint

support which is disjoint from the support of z j for all 0 ≤ j ≤ Nk . We now define a
map Ψ : �p(Z2N ⊕ Z2N ) → L p(R) by

Ψ (α1, ..., α2N , β1, ..., β2N ) =
N∑

j=1

(2N )1/pβ2 j−11G2 j−1g
+
k+1

+
N∑

j=1

(2N )1/pβ2 j1G2 j g
−
k+1 +

2N∑

j=1

α j1Hj .

By (i), (ii), and that ‖g−
k+1‖ = ‖g+

k+1‖ = 2−1/p we have that ‖1G2 j−1g
+
k+1‖ =

(2N )−1/p and ‖1G2 j g
−
k+1‖ = (2N )−1/p for all 1 ≤ j ≤ N . Thus, Ψ is an isometric

embedding and maps positive elements of �p(Z2N ⊕ Z2N ) to positive functions in
L p(R). We let Nk+1 = Nk + 2N and let zNk+ j = Ψ (x j ) for all 1 ≤ j ≤ 2N . Thus,
(d) is clearly satisfied.

Note that Ψ ((0, ..., 0) ⊕ ( 1
(2N )1/p

, −1
(2N )1/p

, ..., 1
(2N )1/p

, −1
(2N )1/p

)) = gk+1, thus by

(3) the distance from gk+1 to the span of (z j )
Nk+1
j=Nk+1 is at most εk+1 which proves (e).

Let z ∈ span(z j )
Nk+1
j=Nk+1 with ‖z‖ = 1. We now prove that ‖PMk z‖ ≤ εk+1.

Note that PMk (z) = ∑Mk
j=0 h

∗
j (z)h j . Let 1 ≤ m ≤ Mk . We have that the functions

(hm |G j )
2N
j=1 all have equal distribution and gk+1 ∈ span(h j )

∞
j=Mk+1. Hence, h

∗
m(1G j )

is independent of j . Let x = (α1, ..., α2N , β1, ..., β2N ) ∈ span(x j )2Nj=1 such that

Ψ (x) = z. Let f = (0)2Nj=1 ⊕ ((2N )−1/q)2Nj=1 ∈ �q(Z2N )⊕ �q(Z2N ). By (2), we have

that (2N )1/q | f (x)| ≤ εk+1
Mk+1 . Since the biorthogonal functionals (h∗

j )
∞
j=0 form the

standard Haar basis in Lq([0, 1]), h∗
m is a multiple of hm , and we denote this multiple
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by Cp,m . We now have that

|h∗
m(z)| = Cp,m

∣∣∣∣
∫ 1

0
hmz dt

∣∣∣∣

= Cp,m

∣∣∣∣
∫ 1

0
hmΨ (x)dt

∣∣∣∣

= Cp,m

∣∣∣∣∣∣

∫ 1

0
hm

N∑

j=1

(2N )1/pβ2 j−11G2 j−1g
+
k+1 +

N∑

j=1

(2N )1/pβ2 j1G2 j g
−
k+1dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣

N∑

j=1

β2 j−1 +
N∑

j=1

β2 j

∣∣∣∣∣∣
(2N )1/p2(nk+1−1)/p

∣∣h∗
m(1G1)

∣∣

≤ (2N )1/q | f (x)| ≤ εk+1

Mk + 1
.

Thus we have that ‖PMk z‖ = ‖∑Mk
j=0 h

∗
j (z)h j‖ ≤ ∑Mk

j=0 ‖h∗
j (z)h j‖ ≤ εk+1.

This proves (c). For all 1 ≤ j ≤ 2N , we have that G j is a finite union of dis-

joint dyadic intervals. Thus, span(z j |[0,1])Nk+1
j=Nk+1 ⊆ span(h j )

∞
j=0. By (β), we

also have that gk+1 ∈ span(h j )
∞
j=Mk+1. We now choose Mk+1 ∈ N such that

span(z j |[0,1])Nk+1
j=Nk+1 ⊆ span(h j )

Mk+1
j=0 and gk+1 ∈ span(h j )

Mk+1
j=0 . Thus, (a) holds

and our proof is complete. ��

4 Schauder frames

Previously, we have considered Schauder bases for Banach spaces, which give unique
representations for vectors. Given a Banach space X with dual X∗, a sequence of pairs
(x j , f j )∞j=1 in X × X∗ is called a Schauder frame or quasi-basis of X if

x =
∞∑

j=1

f j (x)x j for all x ∈ X . (27)

A Schauder frame is called unconditional if the above series converges in every order.
Schauder frames are a possibly redundant coordinate system in that the sequence of
coefficients ( f j (x))∞j=1 which can be used to reconstruct x in (27) may not be unique.
Note that if (x j )∞j=1 is a Schauder basis of X with biorthogonal functionals (x∗

j )
∞
j=1

then (x j , x∗
j )

∞
j=1 is a Schauder frame of X . Thus, Schauder frames are a generalization

of Schauder bases.
For all 1 ≤ p < ∞, there does not exist an unconditional Schauder frame

(x j , f j )∞j=1 for L p(R) such that (x j )∞j=1 is a sequence of non-negative functions
[21]. However, for all 1 ≤ p < ∞, there does exist a conditional Schauder frame
(x j , f j )∞j=1 for L p(R) such that (x j )∞j=1 is a sequence of non-negative functions
[21]. Indeed, if (e j )∞j=1 is a Schauder basis for L p(R) with biorthogonal functionals
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(e∗
j )

∞
j=1 then we may define a Schauder frame (x j , f j )∞j=1 for L p(R) by x2 j = e+

j ,

x2 j−1 = e−
j , f2 j = e∗

j , and f2 j−1 = −e∗
j for all j ∈ N.

For each 1 ≤ p < ∞ and λ ∈ R, we may define the right translation operator
Tλ : L p(R) → L p(R) by Tλ f (t) = f (t − λ). Given 1 ≤ p < ∞, f ∈ L p(R), and
(λ j )

∞
j=1 ⊆ R, there have been many interesting results on the possible structure of

(Tλ j f )
∞
j=1, and the relation on the values (λ j )

∞
j=1 can be very subtle. For example, if

1 ≤ p ≤ 2 then a simple fourier transform argument gives that (Tj f ) j∈Z does not have
dense span in L p(R) [2,13–15]. On the other hand, if 2 < p < ∞ then there does exist
f ∈ L p(R) such that the span of (Tj f ) j∈Z is dense in L p(R) [2,13–15]. Surprisingly,
if ε j �= 0 for all j ∈ Z and ε j → 0 for | j | → ∞ then there does exist f ∈ L2(R) such
that (Tj+ε j f ) j∈Z has dense span in L2(R) [17]. For any (λ j )

∞
j=1 ⊆ R, 1 ≤ p < ∞,

and f ∈ L p(R) the sequence (Tλ j f )
∞
j=1 is not an unconditional Schauder basis for

L p(R) ([19] for p = 2, [18] for 1 < p ≤ 4, and [5] for 4 < p). However, if 2 < p
and (λ j )

∞
j=1 is unbounded then there exists f ∈ L p(R) and a sequence of functionals

(g j )
∞
j=1 such that (Tλ j f , g j )

∞
j=1 is an unconditional Schauder frame of L p(R) [5]. It

was not known for 1 ≤ p < 2 if there exists (λ j )
∞
j=1 ⊆ R, f ∈ L p(R), and a sequence

of functionals (g j )
∞
j=1 such that (Tλ j f , g j )

∞
j=1 is an unconditional Schauder frame

or even conditional Schauder frame for L p(R). However, if the sequence (g j )
∞
j=1 is

semi-normalized (in particular (‖g j‖−1)∞j=1 is bounded) then (Tλ j f , g j )
∞
j=1 cannot

be an unconditional Schauder frame for L p(R) for 1 ≤ p ≤ 2 [3].
We will prove for all 1 ≤ p < ∞ that there exists a single non-negative function

f ∈ L p(R) such that (Tλ j f , g j )
∞
j=1 is a Schauder frame for L p(R) for some sequence

of constants (λ j )
∞
j=1 and some sequence of functionals (g j )

∞
j=1. We will obtain this as

a corollary from the following general result about the existence of certain Schauder
frames, which we believe to be of independent interest. The proof of the following
theorem is inspired by Pelczynski’s proof that every separable Banach space with
the bounded approximation property is isomorphic to a complemented subspace of a
Banach space with a Schauder basis [20].

Theorem 3 Let X be a Banach space with a Schauder basis (e j )∞j=1. Suppose that
D ⊆ X is a subset whose span is dense in X. Then there exists a Schauder frame
(quasi-basis) for X whose vectors are elements of D.

Proof As (e j )∞j=1 is a Schauder basis of X , there exists ε j ↘ 0 such that if (u j )
∞
j=1 ⊆

X and ‖e j−u j‖ < ε j for all j ∈ N then (u j )
∞
j=1 is a Schauder basis of X (see Theorem

1.3.19 [1]). As the span of D is dense in X we may choose (u j )
∞
j=1 ⊆ span(D) such

that ‖e j − u j‖ < ε j for all j ∈ N. Let (u∗
j )

∞
j=1 be the sequence of biorthogonal

functionals to (u j )
∞
j=1. For each n ∈ N, we may choose a linearly independent and

finite ordered set (x j,n)
Jn
j=1 in D such that un can be expressed as the finite sum

un = ∑Jn
j=1 a j,nx j,n where a j,n are non-zero scalars.

Let Cn be the basis constant of (x j,n)
Jn
j=1 and choose Nn ∈ N such that Cn ≤ Nn .

We currently have that un may be uniquely expressed as un = ∑Jn
j=1 a j,nx j,n ,

but to make a Schauder frame we will use the redundant expansion un =∑Nn
i=1

∑Jn
j=1 N

−1
n a j,nx j,n . We claim that ((x j,n, N−1

n a j,nu∗
n))n∈N,1≤i≤Nn ,1≤ j≤Jn is a
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Schauder frame of X where we order {(n, i, j)}n∈N,1≤i≤Nn ,1≤ j≤Jn lexicographically.
That is, (n1, i1, j1) ≤ (n2, i2, j2) if and only if

1. n1 < n2, or
2. n1 = n2 and i1 < i2, or
3. n1 = n2 and i1 = i2 and j1 ≤ j2.

Let x ∈ X and ε > 0. Choose N ∈ N such that ‖∑m2
n=m1

u∗
n(x)un‖ < ε for

all m2 ≥ m1 ≥ N . Consider a fixed (n0, i0, j0) with n0 > N , 1 ≤ j0 ≤ Jn0 , and
1 ≤ i0 ≤ Nn0 . We now have that,

∥∥∥∥∥∥
x −

∑

(n,i, j)≤(n0,i0, j0)

N−1
n a j,nu

∗
n(x)x j,n

∥∥∥∥∥∥

≤
∥∥∥∥∥∥
x −

n0−1∑

n=1

Nn∑

i=1

Jn∑

j=1

N−1
n a j,nu

∗
n(x)x j,n

∥∥∥∥∥∥
+

∥∥∥∥∥∥

i0−1∑

i=1

Jn0∑

j=1

N−1
n0 a j,n0u

∗
n0(x)x j,n0

∥∥∥∥∥∥

+
∥∥∥∥∥∥

j0∑

j=1

N−1
n0 a j,n0u

∗
n0(x)x j,n0

∥∥∥∥∥∥

≤
∥∥∥∥∥x −

n0−1∑

n=1

u∗
n(x)un

∥∥∥∥∥ +
i0−1∑

i=1

N−1
n0

∥∥u∗
n0(x)un0

∥∥ +
∥∥∥∥∥∥

j0∑

j=1

N−1
n0 a j,n0u

∗
n0(x)x j,n0

∥∥∥∥∥∥

< ε + ε + Cn0

∥∥∥∥∥∥

Jn0∑

j=1

N−1
n0 a j,n0u

∗
n0(x)x j,n0

∥∥∥∥∥∥

= ε + ε + Cn0N
−1
n0 ‖u∗

n0(x)un0‖
< ε + ε + ε as Cn0 ≤ Nn0 .

We have that
∑

(n,i, j) N
−1
n a j,nu∗

n(x)x j,n converges to x , and hence the sequence of

pairs ((x j,n, N−1
n a j,nu∗

n))n∈N,1≤i≤Nn ,1≤ j≤Jn is a Schauder frame of X . ��
The previous theorem applied to Banach spaces with a Schauder basis, and we now

show that the same conclusion can be obtained for separable Banach spaces with the
bounded approximation property.

Corollary 1 Let X be a separable Banach space with the bounded approximation
property (i.e. X has a quasi-basis). Suppose that D ⊆ X is a subset whose span is
dense in X. Then there exists a Schauder frame (quasi-basis) for X whose vectors are
elements of D.

Proof As X is separable and has the bounded approximation property there exists
a Banach space Y with a basis such that X ⊆ Y and there is a bounded projection
P : Y → X . As the span of D is dense in X , the span of D∪ (IY − P)Y is dense in Y ,
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where IY is the identity operator on Y . By Theorem 3, there exists a Schauder frame
(x j , f j )∞j=1∪(y j , g j )

∞
j=1 for Y , where x j ∈ D and y j ∈ (IY − P)Y for all j ∈ N. The

projection of a Schauder frame onto a complemented subspace is a Schauder frame
for that subspace. Thus, (Px j , f j |X )∞j=1 ∪ (Py j , g j |X )∞j=1 is a Schauder frame for X .
This is the same as, (x j , f j |X )∞j=1∪ (0, g j |X )∞j=1. Hence, (x j , f j |X )∞j=1 is a Schauder
frame of X whose vectors are in D. ��

We now give the following application to translations of a single positive vector.

Corollary 2 For all 1 ≤ p < ∞, the Banach space L p(R) has a Schauder frame
of the form (x j , f j )∞j=1 where (x j )∞j=1 is a sequence of translates of a single non-
negative function. In the range 1 < p < ∞ this function can be taken to be the
indicator function of a bounded interval in R, and for p = 1 the function can be any
non-negative function whose Fourier transform has no real zeroes.

Proof We first consider the case p = 1. Let f ∈ L1(R). By Wiener’s tauberian
theorem, the set of translations of f has dense span in L1(R) if and only if the Fourier
transform of f has no real zeroes [25]. Thus by Theorem 3 if the Fourier transform
of f has no real zeroes then there exists a sequence of translations (x j )∞j=1 of f and
a sequence of linear functionals ( f j )∞j=1 such that (x j , f j )∞j=1 is a Schauder frame of

L1(R). As an example of a function f ∈ L1(R) such that f̂ has no real zeroes, one
can take f (t) = e−t2 for all t ∈ R.

We now fix 1 < p < ∞ and consider the interval (0, 1] ⊆ R. Note that the span of
the indicator functions of bounded intervals inR is dense in L p(R). Thus we just need
to prove that every indicator function of a bounded interval is in the closed span of the
translates of (0, 1] and then apply Theorem 3 to get a Schauder frame of translates of
the indicator function of (0, 1]. Let D ⊆ L p(R) be the span of the set of translates of
1(0,1].

Let 1 > ε > 0. For each λ ∈ R, we denote Tλ : L p(R) → L p(R) to be the operator
which shifts functions λ to the right. That is, for all f ∈ L p(R), Tλ f (t) = f (t − λ)

for all t ∈ R. Let x1 = 1(0,1] − Tε1(0,1] = 1(0,ε] − 1(1,1+ε]. Thus, x1 ∈ D. For n ∈ N,
we define xn+1 ∈ D by

xn+1 =
n∑

j=0

Tj x1 =
n∑

j=0

1( j, j+ε] − 1( j+1, j+1+ε] = 1(0,ε] − 1(n+1,n+1+ε].

As 1 < p < ∞, the sequence (xn)∞n=1 converges weakly to 1(0,ε]. Thus, 1(0,ε] is
in the weak-closure and hence norm-closure of D as D is convex. This proves that
every indicator function of an interval of length at most 1 is contained in D. As every
bounded interval is the disjoint union of finitely many intervals of length at most 1,
we have that the indicator function of any bounded interval is contained in D. ��
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5 Open problems

Johnson and Schechtman constructed a Schauder basis for L1(R) consisting of non-
negative functions [9], and in Theorem 1 we construct a Schauder basis for L2(R)

consisting of non-negative functions. The following remaining cases are still open.

Problem 1 Let 1 < p < ∞with p �= 2. Does L p(R) have a Schauder basis consisting
of non-negative functions?

In Theorem 2, we showed that L p(R) contains a basic sequence ( fn)∞n=1 of
non-negative functions such that L p(R) embeds into the closed span of ( fn)∞n=1.
Furthermore, the proof gives that for all ε > 0, ( fn)∞n=1 can be chosen to be (2 + ε)-
basic.

Problem 2 Let 1 ≤ p < ∞ with p �= 2. For all ε > 0, does L p(R) contain a
(1 + ε)-basic sequence ( fn)∞n=1 of non-negative functions such that L p(R) embeds
into the closed span of ( fn)∞n=1? What is the infimum of the set of all basis constants
of non-negative bases in L1(R)?

The questions about non-negative bases in L p(R) that are considered here and in
[21] naturally extend to general Banach lattices. We say that a Schauder basis (xn)∞n=1
of a Banach lattice is positive if xn ≥ 0 for all n ∈ N. We say that a Schauder basis
(xn)∞n=1 has positive biorthogonal functionals if the biothorgonal functionals (x∗

n )
∞
n=1

satisfy x∗
n ≥ 0 for all n ∈ N. In the case of L p(μ) or C([0, 1]), Schauder bases of

non-negative functions correspond exactly with Schauder bases of positive vectors.
The unit vector basis for �p is a positive Schauder basis for all 1 ≤ p < ∞, and the
Faber-Schauder system in C([0, 1]) is a Schauder basis of non-negative functions [4].

The existence of positive bases in L1 has the following application to the general
theory of Banach lattices:

Proposition 1 Every separable Banach lattice embeds lattice isometrically into a
Banach lattice with a positive Schauder basis.

Proof It was shown in [10] that every separable Banach lattice embeds lattice iso-
metrically into C(Δ, L1), where Δ denotes the Cantor set and C(Δ, L1) denotes the
Banach space of continuous functions from Δ to L1. Hence, it suffices to show that
C(Δ, L1) has a positive Schauder basis.

By [9], L1 has a basis ( f j ) of positive vectors, and by the proof of [22, Proposition
2.5.1], C(Δ) has a basis (di ) of positive vectors. For each i, j ∈ N, define di ⊗ f j ∈
C(Δ, L1) via (di ⊗ f j )(t) = di (t) f j for all t ∈ Δ. Clearly, di ⊗ f j ≥ 0 in C(Δ, L1).

Now note that C(Δ, L1) is lattice isometric to C(Δ) ⊗λ L1, the injective tensor
product of C(Δ) and L1. We order the collection (di ⊗ f j )i, j∈N into the sequence
(zk)∞k=1 by z1 = d1 ⊗ f1 and for k > 1 we let

zk =
{
di ⊗ fn+1 for k = n2 + i where i, n ∈ N and 1 ≤ i ≤ n + 1,

dn+1 ⊗ fn+1−i for k = n2 + n + 1 + i where i, n ∈ N and 1 ≤ i ≤ n.

Then [23, Theorem 18.1 and Corollary 18.3] guarantee that (zk)∞k=1 is a Schauder
basis. ��
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We have given several examples of Banach lattices with positive bases (L1(R),
L2(R),C([0, 1]), �p, C(Δ, L1), etc.) By duality it is easy to see that L2(R) has a
basis with positive biorthogonal functionals, and using [23, Proposition 10.1, p. 321]
one sees that if K is compact, Hausdorff and C(K ) is infinite-dimensional then C(K )

cannot have a basis with positive biorthogonal functionals. Obviously, the spaces �p
have a basis with positive biorthogonal functionals whenever 1 ≤ p < ∞. A general
question to pose is:

Problem 3 Give further examples of Banach lattices possessing positive bases and/or
bases with positive biorthogonal functionals. Of particular interest are Banach lattices
possessing bases but lacking positive bases.

There are other weaker forms of coordinate systems for which one can impose pos-
itivity conditions. For example, we refer the reader to [24, Remark 7.13] for questions
regarding the structure of Banach lattices possessing FDDs with positivity properties
on their associated projections. Recall that a Markushevich basis of a Banach space
X is a biorthogonal system (xn, x∗

n )
∞
n=1 such that the closed span of (xn)∞n=1 is X and

the collection of functionals (x∗
n )

∞
n=1 separates the points of X . Obviously, when X is

a Banach lattice one can put positivity conditions on xn and x∗
n , and in [21] it is shown

that for all 1 ≤ p < ∞, L p(R) has a Markushevich basis consisting of non-negative
functions. This leaves another general question:

Problem 4 Which separable Banach lattices have Markushevich bases consisting of
positive vectors?Which separableBanach lattices haveMarkushevich bases consisting
of positive functionals?

Suppose that X is a Banach lattice with a Schauder frame (x j , f j )∞j=1. By splitting
up each vector into its positive and negative parts, we obtain that the sequence of pairs
(x+

1 , f1), (x
−
1 ,− f1), (x

+
2 , f2), (x

−
2 ,− f2), . . . is a Schauder frame of X consisting of

positive vectors. Thus, every Banach lattice with a Schauder frame has a Schauder
frame with positive vectors. Similarly, every Banach lattice with a Schauder frame has
a Schauder frame with positive functionals. On the other hand, in [21] it is proven for
all 1 ≤ p < ∞ that L p(R) does not have an unconditional Schauder frame consisting
of positive vectors.

Problem 5 Which separable Banach lattices have an unconditional Schauder frame
with positive vectors? Which separable Banach lattices have an unconditional
Schauder frame with positive functionals?
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