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Abstract. The Grothendieck compactness principle states that every norm com-
pact subset of a Banach space is contained in the closed convex hull of a norm null
sequence. In this article, an analogue of the Grothendieck compactness principle
is considered when the norm topology of a Banach space is replaced by its weak
topology. It is shown that every weakly compact subset of a Banach space is con-
tained in the closed convex hull of a weakly null sequence if and only if the Banach
space has the Schur property.

In [3, p. 112], Alexander Grothendieck proved that every norm compact subset
of a Banach space X is contained in the closed convex hull of a norm null se-
quence. Grothendieck remarks that this result is implicitly contained in an article of
J. Dieudonné and L. Schwartz [1, proof of Th. 5]. Despite Grothendieck’s remark,
we refer to this result as the Grothendieck compactness principle.

It is known that an analogue of Grothendieck’s compactness principle does not
hold for all Banach spaces if the norm topology is replaced by the weak topology.
Lindenstrauss and Phelps [5, Corollary 1.2] proved that the closed unit ball in an
infinite-dimensional reflexive Banach space cannot be contained in the closed convex
hull of a weakly null sequence. Also, in [7], it is noted that the closed unit ball of `2,
considered as a subset of c0, is not contained in the closed convex hull of a weakly
null sequence in c0.

The question that provides the impetus for the current article is: For which Banach
spaces do analogues of Grothendieck’s compactness principle hold if the norm topol-
ogy of a Banach space is replaced by its weak topology? That is, for which Banach
spaces is it true that every weakly compact set in the Banach space is contained in
the closed convex hull of a weakly null sequence?

If X is a Banach space with the Schur property, that is, a space in which weak
convergence and norm convergence of sequences coincide, then every weakly compact
set is norm compact; and therefore, by Grothendieck’s result, in spaces with the Schur
property, every weakly compact set is contained the closed convex hull of a weakly
(in fact, norm) null sequence. It turns out that no other spaces have this property.

Theorem 1. Every weakly compact subset of a Banach space X is contained in the
closed convex hull of a weakly null sequence if and only if X has the Schur property.

Before proving the theorem, let us recall a definition and a few facts. A Schauder
basis {ei}∞i=1 for a Banach space is bimonotone if, for every n,m ∈ N with n < m, the

1



2P.N. DOWLING, D. FREEMAN, C.J. LENNARD, E. ODELL, B. RANDRIANANTOANINA, AND B. TURETT

projection P[n,m) defined by P[n,m) (
∑∞

i=1 aiei) =
∑m−1

i=n aiei satisfies ‖P[n,m)‖ = 1. It
is worth noting that, if {ei} is a basis for a Banach space X, then X can be renormed
to have an equivalent bimonotone norm: |||

∑∞
i=1 aiei||| = supn<m ‖P[n,m) (

∑∞
i=1 aiei) ‖.

Consequently, since every separable Banach space is isometrically isomorphic to a
closed subspace of C[0, 1], every separable Banach space can be considered to be a
subspace of a space with a normalized bimonotone basis.

As a last bit of notation before proving the theorem, for a subset J of N, PJ is
defined similar to the above and, as usual, Pn will denote the projection P[1,n].

Proof of Theorem 1. Let X be a Banach space such that every weakly compact subset
of X is contained in the closed convex hull of a weakly null sequence in X. In order
to reach a contradiction, assume that X does not have the Schur property. Then
there exists a normalized sequence (xi)

∞
i=1 in X that converges weakly to 0. Define

Kn = (n · co(xi)
∞
i=1) ∩

1

n
BX , for all n ∈ N ,

and
K = ∪∞n=1Kn ,

where BX is the closed unit ball of X. Since the sequence (xi)
∞
i=1 converges weakly

to 0, the sets co(xi)
∞
i=1 and Kn for n ∈ N are weakly compact. Note that, since the

diameters of the sets Kn converge to 0, any weakly open set containing 0 will contain
all but finitely many of the Kn’s. Thus, if {Uα}α∈A is a weakly open cover of K,
there exists β ∈ A such that all but finitely many of the Kn are subsets of Uβ. The
collection of Kn which are not a subset of Uβ is a finite collection of weakly compact
sets, and are thus covered by a finite subcollection of sets in {Uα}α∈A. Therefore K
is weakly compact.

Since K is a weakly compact subset of X, there exists a weakly null sequence (yi)
∞
i=1

such that K ⊆ co(yi). If Y denotes the closed span of {yi}∞i=1, then Y is a separable
Banach space containing K and co(yi). By the remarks preceding the proof, we may
consider Y to be a subspace of a Banach space with a normalized bimonotone basis
{ei}∞i=1.

Fix N ∈ N, 0 < ε < 1, and a sequence (εi)
∞
i=1 decreasing to 0 with

∑∞
i=1 εi <

ε. Since the sequences (xi)
∞
i=1 and (yi)

∞
i=1 are weakly null, there exist increasing

sequences (mi)
∞
i=1, (pi)

∞
i=1, and (qi)

∞
i=1 in N satisfying the following properties:

(1) ‖xmj
− P[q2j−1,q2j)(xmj

)‖ < ε2j , for all j ∈ N .

(2) ‖P[q2j−1,q2j)(xmi
)‖ < εiεj , for all i 6= j .

(3) ‖P[q2j−1,q2j)(yi)‖ < εj , for all i /∈ [pj, pj+1) .

Since (xmi
)∞i=1 is weakly null, 0 ∈ co(xmi

). After scaling by N , this implies

that there exists M ∈ N and (λi)
M
i=1 ⊆ [0, 1] such that ‖

∑M
i=1 λixmi

‖ ≤ 1
N

and∑M
i=1 λi = N . (Indeed, choose N convex combinations of the xmi

’s, in blocks
with disjoint support, such that the norms of the convex combinations are each
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less than 1
N2 and sum them.) This is equivalent to

∑M
i=1 λixmi

∈ KN . If we now
fix δ = ε

M
, there exists a sequence (αi)

∞
i=1 in [0, 1] such that

∑∞
i=1 αi = 1 and

‖
∑M

i=1 λixmi
−
∑∞

i=1 αiyi‖ < δ.
For each 1 ≤ j ≤M , since (ei) is bimonotone, we obtain the following estimate:

δ >

∥∥∥∥∥P[q2j−1,q2j)

(
M∑
i=1

λixmi
−
∞∑
i=1

αiyi

)∥∥∥∥∥
≥

∥∥∥∥∥
M∑
i=1

λiP[q2j−1,q2j)(xmi
)

∥∥∥∥∥−
∞∑
i=1

αi‖P[q2j−1,q2j)(yi)‖

≥

∥∥∥∥∥
M∑
i=1

λiP[q2j−1,q2j)(xmi
)

∥∥∥∥∥− ∑
i∈[pj ,pj+1)

αi‖yi‖ −
∑

i/∈[pj ,pj+1)

αi‖P[q2j−1,q2j)(yi)‖

>

∥∥∥∥∥
M∑
i=1

λiP[q2j−1,q2j)(xmi
)

∥∥∥∥∥− ∑
i∈[pj ,pj+1)

αi‖yi‖ − εj , by (3)

≥ λj‖xmj
‖ − λj‖xmj

− P[q2j−1,q2j)(xmj
)‖ −

∑
i≤M
i 6=j

λi‖P[q2j−1,q2j)(xmi
)‖ −

∑
i∈[pj ,pj+1)

αi‖yi‖ − εj

> λj − ε2j −
∑
i≤M
i 6=j

εiεj −
∑

i∈[pj ,pj+1)

αi‖yi‖ − εj by (1) and (2)

> λj −
∑

i∈[pj ,pj+1)

αi‖yi‖ − 2εj

Summing these inequalities over 1 ≤ j ≤M yields

Mδ >
M∑
j=1

λj −
∞∑
i=1

αi‖yi‖ − 2ε ≥ N − sup
i∈N
‖yi‖ − 2ε

so that

sup
i∈N
‖yi‖ > N −Mδ − 2ε = N − 3ε .

However, since ε > 0 can chosen to be arbitrarily small, supi∈N ‖yi‖ ≥ N . Then,
since N is an arbitrary positive integer, supi∈N ‖yi‖ =∞, contradicting that (yi) is a
weakly null sequence. Therefore X must have the Schur property. �

It is known [4] that a Banach space X with a 1-symmetric basis has the Schur prop-
erty if and only if X = `1. Since a Banach space with a symmetric basis {en} can be
endowed with an equivalent norm such that {en} is a 1-symmetric basis with respect
to the new norm, Theorem 1 provides a characterization of the Banach spaces with
a symmetric basis that have the analogue of the Grothendieck compactness principle
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for the weak topology. (For information about Banach spaces with symmetric bases,
see [6, Chapter 3].)

Corollary 2. Let X be a Banach space with a symmetric basis. Every weakly compact
subset of X is contained in the closed convex hull of a weakly null sequence if and
only if X is isomorphic to `1.

Other variants of the Grothendieck compactness principle can be considered, and
results on the weak Grothendieck compactness principle in the setting of Banach
spaces with a symmetric basis will appear elsewhere [2].
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