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Abstract The Grothendieck compactness principle states that every norm
compact subset of a Banach space is contained in the closed convex hull of a
norm null sequence. In [1], an analogue of the Grothendieck compactness prin-
ciple for the weak topology was used to characterize Banach spaces with the
Schur property. Using a different analogue of the Grothendieck compactness
principle for the weak topology, a characterization of the Banach spaces with
a symmetric basis that are not isomorphic to `1 and do not contain a subspace
isomorphic to c0 is given. As a corollary, it is shown that, in the Lorentz space
d(w, 1), every weakly compact set is contained in the closed convex hull of the
rearrangement invariant hull of a norm null sequence.
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1 Introduction

The Grothendieck compactness principle states that every norm compact sub-
set of a Banach space is contained in the closed convex hull of a norm null
sequence [3, p. 112]. In [1], an analogue of the Grothendieck compactness prin-
ciple for the weak topology was used to characterize Banach spaces with the
Schur property. To be specific, it was shown that a Banach space X has the
Schur property if and only if every weakly compact subset of X is contained
in the closed convex hull of a weakly null sequence.

In this article, another variant of the Grothendieck compactness principle
for the weak topology is considered in Banach spaces with a symmetric basis.
The weak Grothendieck compactness principle considered here involves rear-
rangement invariant hulls as well as convex hulls and is used to characterize
the Banach spaces with a symmetric basis that are not isomorphic to `1 and
do not contain a subspace isomorphic to c0. Subsets of such Banach spaces
X are relatively weakly compact if and only they are contained in the closed
convex hull of the rearrangement invariant hull of a weakly null sequence in
X. Moreover, in the Lorentz sequence space d(w, 1), every weakly compact set
is contained in the closed convex hull of the rearrangement invariant hull of a
norm null sequence.

2 The main results

Before proving the main result, let us recall a few definitions and fix some
notation. If x = (an) is an element of c0, let x∗ = (a∗n) denote its nonincreasing
rearrangement; i.e., (a∗n) is an enumeration of the nonzero terms of (|an|) such
that a∗1 ≥ a∗2 ≥ · · · followed by infinitely many zeros if necessary. If S is a
subset of c0, the rearrangement invariant hull of S is

ri(S) = {y ∈ c0 : y∗ = x∗ for some x ∈ S} .
A set S is rearrangement invariant if ri(S) = S. A Banach space X with a

1-symmetric basis is rearrangement invariant and ‖x∗‖ = ‖x‖, for all x ∈ X. If
S is a weakly closed subset of a Banach space with a 1-symmetric basis, it does
not necessarily follow that ri(S) is weakly closed. For example, if {en}n∈N is
the canonical unit vector basis in `2 and S = {e1}, then ri(S) = {en : n ∈ N},
a set which is not weakly closed in `2. With this motivation, if S is a subset of
a Banach space with a 1-symmetric basis, ri(S) will denote the weak closure
of ri(S). Finally, the notation will follow the notation in [1]. In particular, if
{ei}∞i=1 is a Schauder basis and n < m, P[n,m) denotes the projection defined

by P[n,m) (
∑∞
i=1 aiei) =

∑m−1
i=n aiei, and, for a subset J of N, PJ is defined

similarly. As usual, Pn will denote the projection P[1,n].
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The proof of the main result uses the following fact:

Lemma 1 If S is a subset of a Banach space with a symmetric basis, then
ri co(S) ⊆ co ri(S).

Since the proof of Lemma 1 is somewhat technical and the results may be of
independent interest, the proof of Lemma 1 is postponed until after Theorem
2.

Theorem 1 Let X be a Banach space with a symmetric basis. The space X
is not isomorphic to `1 and does not contain a subspace isomorphic to c0 if
and only if the following are equivalent for all subsets K ⊆ X:

1. K is relatively weakly compact.
2. There exists a weakly null sequence (xn)n∈N in X such that

K ⊆ ri{xn : n ∈ N} .

3. There exists a weakly null sequence (xn)n∈N in X such that

K ⊆ ri co{xn : n ∈ N} .

4. There exists a weakly null sequence (xn)n∈N in X such that

K ⊆ co ri{xn : n ∈ N} .

Proof Let {ei}∞i=1 denote the symmetric basis of X. Since a Banach space
with a symmetric basis {ei} can be endowed with an equivalent norm such
that {ei} is a 1-symmetric basis with respect to the new norm, there is no loss
of generality in assuming that (ei)

∞
i=1 is normalized and 1-symmetric. If X is

isomorphic to `1 then the set K = ri{e1} = {±en : n ∈ N} is not relatively
weakly compact and yet it is contained in the weak closure of the rearrange-
ment invariant hull of the weakly null sequence (xn)n = (e1, 0, 0, 0, ...). Thus,
statement (2) is true but statement (1) is false. Consequently, the four prop-
erties are not equivalent for all K ⊆ X if X is isomorphic to `1. We now show
that the condition that X not contain a subspace isomorphic to c0 is neces-
sary for all four properties to be equivalent for all K ⊂ X. In particular, we
will show that if X contains a subspace isomorphic to c0, then there exists a
K ⊂ X such that (2) is true, but (1) is false.

We assume that X contains a subspace isomorphic to c0, which implies,
due to c0 not being distortable [5], that there exists a normalized block basis
(ui)

∞
i=1 of (ei)

∞
i=1 which satisfies,

max
1≤i<∞

|ai| ≤ ‖
∞∑
i=1

aiui‖ ≤ 2 max
1≤i<∞

|ai| for all (ai) ∈ c0. (∗)

For all n ∈ N, we define the right shift operator Rn : X → X by Rn(x) =∑∞
i=1 e

∗
i (x)ei+n. In other words, if x = (a1, a2, · · · ) thenRn(x) = (0, . . . , 0︸ ︷︷ ︸

n

, a1, a2, · · · ).

As (ui)
∞
i=1 is a block basis of (ei)

∞
i=1, we may choose a subsequence (ki)

∞
i=1 such
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that (Rkn(
∑n
i=1 ui))

∞
n=1 is a block basis of (ei)

∞
i=1. We let xn = Rkn(

∑n
i=1 ui)

for all n ∈ N. By (∗), we have that ‖xn‖ ≤ 2 for all n ∈ N. We define
K =

⋃
1≤n<∞{

∑n
i=1 ui}. Since K consists of a sequence which is equivalent

to the summing basis for c0, K is not relatively weakly compact. However,
K ⊆ ri{xn : n ∈ N}. We thus just need to show that (xn)∞n=1 is weakly null.
We assume that (xn)∞n=1 is not weakly null, and hence has a subsequence
(xpn)∞n=1 which is equivalent to the unit vector basis for `1.

Let ε > 0 and let x ∈ X be such that (Rkpnx)∞n=1 is a block basis of (ei)
∞
i=1.

As X is not isomorphic to `1 and (ei)
∞
i=1 is symmetric, (Rkpnx)∞n=1 is not equiv-

alent to the unit vector basis for `1, and is hence weakly null. Thus there exists
(λi)

M
i=1 ⊂ (0, 1] such that

∑M
i=1 λi = 1 and ‖

∑M
i=1 λiRkpix‖ < ε. Let CM be

the group of M cyclic permutations of the set {1, 2, · · · ,M}. As (ei)
∞
i=1 is 1-

symmetric and (Rkpix)∞i=1 is a block basis of elements with the same distribu-

tion, we have that ‖
∑M
i=1 λπ(i)Rkpix‖ = ‖

∑M
i=1 λiRkpix‖ < ε for all π ∈ CM .

By averaging over all cyclic permutations, we obtain that ‖
∑M
i=1

1
MRkpix‖ =

‖ 1
M

∑
π∈CM

∑M
i=1 λπ(i)Rkpix‖ ≤

1
M

∑
π∈CM ‖

∑M
i=1 λπ(i)Rkpix‖ < ε. We may

thus choose a strictly increasing sequence (qi)
∞
i=1 of positive integers with

q1 = 1 such that ‖ 1
qn+1−qn

∑qn+1

i=qn+1Rkpi (
∑pqn
j=1 uj)‖ < 2−nε for all n ≥ 2. We

set y1 = xp1 and yn = 1
qn+1−qn

∑qn+1

i=qn+1 xpi for all n ≥ 2, then set z1 = 0 and

zn = 1
qn+1−qn

∑qn+1

i=qn+1Rpki (
∑pqn
j=1 uj) for all n ≥ 2. We have that (yi)

∞
i=1 is a

block sequence of convex combinations of (xpi)
∞
i=1 and is hence equivalent to

the unit vector basis of `1. Thus if ε > 0 is sufficiently small, then (yi− zi)∞i=1

is equivalent to the unit vector basis for `1 as ‖zi‖ < 2−nε for all n ∈ N. How-
ever, this is a contradiction as (yi− zi)∞i=1 is 1-equivalent to a seminormalized
block basis of (ui)

∞
i=1 and is hence equivalent to the unit vector basis for c0.

We now show that the conditions that X is not isomorphic to `1 and
X contains no subspace isomorphic to c0 are sufficient for all four proper-
ties to be equivalent for all K ⊆ X. Assume (1) holds and, without loss
of generality, assume that K is nonempty and weakly compact. Let (en) be
a 1-symmetric basis of X. Since X is separable, we can choose a countable
dense subset {zn = (zn,1, zn,2, · · · )}n∈N of K. For n ∈ N, define xn ∈ X by
xn = (0, . . . , 0︸ ︷︷ ︸

n

, zn,1, zn,2, · · · ). Then x∗n = z∗n; the sequence (xn) converges to

0 coordinatewise; and ri(K) = ri{xn : n ∈ N}.
For the sake of contradiction, assume that (xn) does not converge weakly to

0. Then, as in the proof of Lemma 1.c.11 in [8], there exists a subsequence (xnj )
of (xn) such that (xnj ) is equivalent to a block basis of (en) and is equivalent to
the unit vector basis of `1. Since K is weakly compact, by taking a subsequence
if necessary, there is no loss in generality in assuming that the sequence (znj )
in K corresponding to (xnj ) converges weakly to z = (z1, z2, · · · ) in K. Let
hj = znj − z = (hj,1, hj,2, · · · ), and define

ζj = (0, . . . , 0︸ ︷︷ ︸
nj

, z1, z2, · · · ) and ηj = (0, . . . , 0︸ ︷︷ ︸
nj

, hj,1, hj,2, · · · ) .
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Then xnj = ζj + ηj and, since (xnj ) is equivalent to the usual vector basis of
`1, Rosenthal’s `1 Theorem implies that either (ζj) or (ηj) is equivalent to the
usual vector basis of `1.

Assume that (ηj) is equivalent to the unit vector basis of `1. Since (hj)

converges weakly to 0, there exists a perturbation (h̃j) of (hj) which is equiva-
lent to (hj), converges weakly to 0, and, by taking a subsequence if necessary,
has disjoint supports. By taking yet another subsequence if necessary, we can
assume that the corresponding translations (η̃j) of (h̃j) also have disjoint sup-
ports and (η̃j) is equivalent to (ηj). Therefore (η̃j) is equivalent to the unit
vector basis of `1. Since the basis (en) is 1-symmetric, there exists C > 0 such
that ∥∥∥∥∥∥

∞∑
j=1

αjh̃j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑
j=1

αj η̃j

∥∥∥∥∥∥ ≥ C
∞∑
j=1

|αj | .

Therefore (h̃j) is equivalent to the unit vector basis of `1, contradicting that

(h̃j) converges weakly to 0. Consequently, (ζj) must be equivalent to the unit
vector basis of `1.

Choose 0 < K < 1 so that ‖
∑∞
j=1 αjζj‖ ≥ K

∑∞
=1 |αj | for (αj) ∈ `1. Since

z ∈ X, there exists N ∈ N such that ‖P[N+1,∞)(z)‖ < K
2 . Define

ζ ′j = (0, . . . , 0︸ ︷︷ ︸
nj

, z1, · · · , zN , 0, 0, · · · ) and ζ ′′j = (0, . . . , 0︸ ︷︷ ︸
nj+N

, zN+1, · · · , zN+2, · · · ) .

By the triangle inequality, it is easy to check that ‖
∑∞
j=1 αjζ

′
j‖ ≥ K

2

∑∞
j=1 |αj |.

Therefore (ζ ′j) is equivalent to the usual vector basis for `1. By taking a subse-
quence if necessary, we can assume that the ζ ′j are disjointly supported. Then,
using the 1-symmetry of (en),

K

2

∞∑
j=1

|αj | ≤

∥∥∥∥∥∥
∞∑
j=1

αjζ
′
j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∞∑
j=1

αj

(
N∑
i=1

zi enj+i

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
N∑
i=1

zi

 ∞∑
j=1

αjenj+i

∥∥∥∥∥∥
≤ N‖z‖∞

∥∥∥∥∥∥
∞∑
j=1

αjej

∥∥∥∥∥∥ .
Therefore ‖

∑∞
j=1 αjej‖ ≥

K
2N‖z‖∞

∑∞
j=1 |αj |. But this implies that X is iso-

morphic to `1, a contradiction that finishes the proof of (1) implies (2).
The implication (2) implies (3) is clear, and the implication (3) implies (4)

follows immediately from Lemma 1.
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Assume that (4) holds and, without loss of generality, that (en) is a nor-
malized 1-symmetric basis for X. To see that (4) implies (1), it suffices to
prove that ri(xn) is relatively weakly compact. If not, there exists a subse-
quence (xni) of (xn) and a sequence (x̃ni) such that x̃∗ni = x∗ni and (x̃ni) has
no weakly convergent subsequence. Without loss of generality, assume that
(x̃ni) converges coordinatewise to x. Suppose that x̃ni =

∑∞
j=1 ξ̃

i
jej and x

is the formal sum
∑∞
j=1 ξjej . Fix k ∈ N and choose i0 large enough so that∥∥∥∑k

j=1(ξj − ξ̃i0j )ej

∥∥∥ < 1. With M = supn ‖xn‖, it follows that

∥∥∥∥∥∥
k∑
j=1

ξjej

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
k∑
j=1

(ξj − ξ̃i0j )ej

∥∥∥∥∥∥+

∥∥∥∥∥∥
k∑
j=1

ξ̃i0j ej

∥∥∥∥∥∥ < 1+‖Pk(x̃ni0 )‖ ≤ 1+‖xni0 ‖ ≤ 1+M.

Since X contains no subspace isomorphic to c0, the basis (en) is boundedly
complete. Therefore x ∈ X.

For i ∈ N, define h̃i = x̃ni − x. Since no subsequence of (h̃i) converges

weakly to 0, there exists δ > 0 such that ‖h̃i‖ > δ for each i ∈ N. A small

perturbation of (h̃i) yields a sequence (h′i) in X such that (h′i) is a block
basic sequence of (en), (h′i) has no subsequence converging weakly to 0, and
‖h′i‖ > δ for each i ∈ N. As before, by passing to a subsequence if necessary,

there is no loss of generality in assuming that (h′i) and (h̃i) are equivalent to
the usual vector basis for `1.

Since x ∈ X, there exists k1 ∈ N such that
∥∥P[k1+1,∞)(x)

∥∥ < δ
3·22 . By

tossing out finitely many terms of (x̃ni) if necessary, there is no loss of gen-

erality in assuming that
∥∥∥P[1,k1](h̃1)

∥∥∥ < δ
3·22 . Then choose `1 > k1 such that∥∥∥P[`1+1,∞)(h̃1)

∥∥∥ < δ
3·22 and define h1 = P[k1+1,`1](h̃1) =

∑`1
j=k1+1

(
ξ̃1j − ξj

)
ej .

Let A1 = { i ∈ [1, k1] : ξ̃1i 6= 0}; B1 = { i ∈ [k1 + 1, `1] : ξ̃1i 6= 0}; and, for i ∈ N,
denote xni =

∑∞
j=1 ξ

i
jej . There exists a one-to-one map π1 : A1 ∪ B1 → N

such that ξ̃1i = ξ1π(i). Let y1 =
∑∞
j=1 υ

1
j ej where

υ1j =


ξ̃1i if j = π1(i), i ∈ A1

ξ̃1i − ξi if j = π1(i), i ∈ B1

0 otherwise.

The element y1 is defined using some of the coordinates of x̃n1
(and xn1

) and

the coordinates of PB1
(h̃1). If i ∈ [k1 + 1, `1] \ B1, ξ̃1i − ξi = −ξi and, since∥∥P[k1+1,`1](x)

∥∥ < δ
3·22 ,

∥∥∥h̃1 − PB1
(h1)

∥∥∥ ≤ ∥∥∥h̃1 − h1

∥∥∥+ ‖h1 − PB1
(h1)‖ < 2δ

3 · 22
+

δ

3 · 22
=

δ

22
.
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Note also that

‖xn1
− y1‖ ≤ ‖P[`1+1,∞)(x̃n1

)‖+ ‖P[k1+1,`1](x)‖

≤ ‖P[`1+1,∞)(x)‖+ ‖P[`1+1,∞)(h̃1)‖+ ‖P[k1+1,`1](x)‖

<
δ

22
.

Let κ1 = maxπ1(A1 ∪ B1) and define µ1 = min{|ξ1j | : ξ1j 6= 0 and 1 ≤
j ≤ κ1}. Then κ1 > 0. Similar to the above, there exists k2 > `1 such that∥∥P[k2+1,∞)(x)

∥∥ < δ
3·23 . Again, by tossing out finitely many terms of (x̃ni) if

necessary, since (xn) converges weakly to 0, there exists n2 > n1 such that

‖P[1,κ1](xn2
)‖ < δ

3·23 , ‖P[1,κ1](xn2
)‖∞ < µ1

2 , and
∥∥∥P[1,k2](h̃2)

∥∥∥ < δ
3·23 . Then

choose `2 > k2 such that
∥∥∥P[`2+1,∞)(h̃2)

∥∥∥ < δ
3·23 . Define h2 = P[k2+1,`2](h̃2) =∑`2

j=k2+1

(
ξ̃2j − ξj

)
ej . Let A2 = { i ∈ [1, k2] : ξ̃2i 6= 0} and B1 = { i ∈ [k2 +

1, `2] : ξ̃2i 6= 0}. There exists a one-to-one map π2 : A2 ∪ B2 → N such that

ξ̃2i = ξ2π2(i)
. Let y2 =

∑∞
j=1 υ

2
j ej where

υ2j =


ξ̃2i if j = π2(i), i ∈ A2

ξ̃2i − ξi if j = π2(i), i ∈ B2

0 otherwise.

Similar to before,∥∥∥h̃2 − PB2
(h2)

∥∥∥ < δ

23
and ‖xn2

− y2‖ <
δ

23
.

Note that, since
∥∥P[1,κ1](xn2

)
∥∥
∞ < µ1

2 , the support of y2 is disjoint from the
support of y1.

Continuing the above argument, we get a subsequence (xni) (of the originally-
denoted (xni)) and sequences (hi) and (yi) such that∥∥∥h̃i − PBi(hi)∥∥∥ < δ

2i+1
and ‖xni − yi‖ <

δ

2i+1

and, if i 6= j, the supports of yi and yj are disjoint.

Since (h̃i) is equivalent to the usual vector basis of `1, this implies, by
taking a subsequence if necessary, that (PBi(hi)) is an `1-basis. Note also that
(yi) is a bounded sequence in X and, since the basis (en) is 1-symmetric, there
exists C > 0 such that∥∥∥∥∥

∞∑
i=1

αiyi

∥∥∥∥∥ ≥
∥∥∥∥∥
∞∑
i=1

αiPπi(Bi)(yi)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
i=1

αiPBi(hi)

∥∥∥∥∥ ≥ C
∞∑
i=1

|αi| .

Thus (yi) is equivalent to the usual vector basis of `1 and, by perturbation, we
can assume, by taking a subsequence if necessary, that (xni) is equivalent to
the usual vector basis of `1. But this contradicts that (xni) converges weakly
to 0 and completes the proof.
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In Theorem 1, the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold even if X
contains a subspace isomorphic to c0. However, if X has a subspace isomorphic
to c0, condition (4) does not imply condition (1). To see this, choose a countable
dense subset {zn : n ∈ N} of Bc0 and define xn as in the proof of Theorem 1.
Since ri{xn : n ∈ N} = Bc0 , the sequence (xn)n∈N is a weakly null sequence in
c0 with Bc0 = co ri{xn : n ∈ N}, but Bc0 is not relatively weakly compact.

Examples of spaces with 1-symmetric bases for which the four conditions of
Theorem 4 are equivalent are all the rearrangement invariant Köthe sequence
spaces that are perfect, minimal and not equal to `1. (For further information
about Köthe sequence spaces, see [9, §1.b and §2.a], [6, §30], and [2]. Note
that, in [2], Köthe sequence spaces are assumed to be perfect.)

In the setting of Lorentz sequence spaces, Theorem 1 can be expanded.
Recall that, if (wn) is a nonincreasing sequence of positive numbers with
(wn) ∈ c0 \ `1, the Lorentz sequence space d(w, 1) (sometimes denoted `w,1)
consists of all sequences x = (an) of scalars for which ‖x‖ =

∑∞
n=1 a

∗
nwn <∞.

The set d(w, 1) endowed with the norm ‖ · ‖ is a Banach space. (For more in-
formation about Lorentz spaces, see [8,9].)

Theorem 2 Let K be a subset of d(w, 1), where w ∈ c0\`1. The following are
equivalent:

1. K is relatively weakly compact.
2. There exists a norm null sequence (xn)n∈N in d(w, 1) such that

K ⊆ ri co{xn : n ∈ N} .

3. There exists a norm null sequence (xn)n∈N in d(w, 1) such that

K ⊆ co ri{xn : n ∈ N} .

4. There exists a weakly null sequence (xn)n∈N in d(w, 1) such that

K ⊆ co ri{xn : n ∈ N} .

5. There exists a weakly null sequence (xn)n∈N in d(w, 1) such that

K ⊆ ri co{xn : n ∈ N} .

Proof Let K be a relatively weakly compact set in d(w, 1). Assume, for the

sake of contradiction, that the set K∗
def
= {x∗ : x ∈ K} is not relatively

compact. Then there exists a sequence (xn) in K such that (x∗n) has no con-
vergent subsequence. By passing to a subsequence if necessary, assume that
(x∗n) converges coordinatewise to x. Since the unit vector basis (en) of d(w, 1)

is boundedly complete, x ∈ X. Define h̃n = x∗n−x for n ∈ N. By perturbation

of (h̃n), there exists a seminormalized block basis (hn) of (en) equivalent to

(h̃n) and, since x∗n and x are nonincreasing sequences, it is easy to ensure that
limn ‖hn‖∞ = 0. Proposition 4.e.3 in [8, p. 177] gives a subsequence (hni)
of (hn) that is equivalent to the usual vector basis of `1. Consequently, the

sequence (h̃ni) can be assumed to be equivalent to the usual vector basis of
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`1. The weak compactness of K and the proof of (4) implies (1) in Theorem
1 combine to give a subsequence of (xni) that is both equivalent to the usual
vector basis of `1 and is weakly convergent, a contradiction proving that K∗

is relatively compact. Then, by Grothendieck’s compactness principle, there
exists a norm null sequence (yn) in d(w, 1) such that K∗ ⊆ co{yn : n ∈ N}.
Since K ⊆ ri(K∗) ⊆ ri co{yn : n ∈ N}, the implication (1) implies (2) is
proven.

The remaining implications are either immediate or follow from Lemma 1
and Theorem 1.

It should be noted that the proofs of Theorem 1 and Theorem 2 could
be shortened using Theorem 14 and Theorem 16 in [2]. However, the proofs
provided above are more self-contained.

3 The proof of Lemma 1

We now return to the proof of Lemma 1. Recall that a subset T of c0 is called
rearrangement invariant if z ∈ T whenever z ∈ c0 and z∗ = x∗ for some x ∈ T .
For sequences x, y ∈ c0, x is weakly majorized by y (or x is dominated by y) if,
for all n ∈ N,

n∑
j=1

x∗j ≤
n∑
j=1

y∗j . (?)

In this case, we write x ≺≺ y. (See, for example, [4, page 166], [9, page 123],
or [11, page 185].)

Considering a Banach space with a Schauder basis as a sequence space, a
Banach space with a 1-symmetric basis has the domination property [11]: If X
is a Banach space with a 1-symmetric basis, for all y ∈ X and all x ∈ c0 with
x ≺≺ y, it follows that x ∈ X and ‖x‖ ≤ ‖y‖. Indeed, if x ≺≺ y for y ∈ X and
x ∈ c0, assume that ‖x‖1 =∞. (If ‖x‖1 <∞, the result is easy.) Let ε > 0 be
given and choose m ∈ N so that ‖(I − Pm)(y∗)‖ < ε. Then choose a natural
number k > m such that ‖Pk(x∗)‖ > ‖Pm(y∗)‖. By (?) and the choice of k, it
follows that, if k < `,

∑̀
j=k+1

x∗j =
∑̀
j=1

x∗j −
k∑
j=1

x∗j ≤
∑̀
j=1

y∗j −
m∑
j=1

y∗j =
∑̀

j=m+1

y∗j .

This shows that P(k,`](x
∗) ≺≺ P(m,`](y

∗) and, by Remark 1 in [9, page 124], it
follows that

‖P(k,`](x
∗)‖ ≤ ‖P(m,`](y

∗)‖ ≤ ‖(I − Pm)(y∗)‖ < ε .

Therefore the sequence (Pn(x∗)) converges to x∗ in X and, since the basis for
X is 1-symmetric, x ∈ X. It is then easy to check that ‖x‖ ≤ ‖y‖. Therefore
a Banach space with a 1-symmetric basis has the domination property. (This
result also follows from Theorem 3.2 in [10].)
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In what follows we will sometimes identify vectors x = (x1, . . . , xn) ∈ Rn
with
(x1, . . . , xn, 0, . . . , 0, . . . ) ∈ c00. If n ∈ N, Nn := {1, . . . , n}, and y ∈ Rn, define
the set

Symn(y) = {(εj yπ(j))nj=1 ∈ Rn|π : Nn −→ Nn is a bijection and ε ∈ {−1, 1}Nn} .

Note that Symn(y) = ri{y} for all y ∈ Rn. A connection between weak ma-
jorization of elements in Rn and rearrangement invariant hulls is given by the
Theorem 1.2 in [10].

Theorem 3 (Markus) Let n ∈ N and x, y ∈ Rn. The following are equiva-
lent:

1. x ≺≺ y.
2. x ∈ co Symn(y).

Define the weakly majorized rearrangement invariant hull of a set S in a
Banach space X with a symmetric basis to be

riwm(S) = {y ∈ c0 : y ≺≺ x for some x ∈ co(S∗)}

where S∗ = {x∗ : x ∈ S}.

Lemma 2 Let S be a subset of a Banach space X with a symmetric basis.
Then riwm(S) is a convex, rearrangement invariant subset of X containing S.

Proof Without loss of generality, assume that X is a Banach space with a 1-
symmetric basis. Since Banach spaces with a 1-symmetric basis have the dom-
ination property, riwm(S) is contained in X. It is easy to check that riwm(S)
is a rearrangement invariant set containing S. To show that the set riwm(S)
is convex, let y, z ∈ riwm(S); let 0 ≤ t ≤ 1; and let w = (1 − t)y + tz. By
hypothesis, there exists x, q ∈ co(S∗) such that for all n ∈ N,

n∑
j=1

y∗j ≤
n∑
j=1

x∗j and

n∑
j=1

z∗j ≤
n∑
j=1

q∗j .

Set p = (1− t)x+ tq ∈ co(S∗) and note that x∗ = x, q∗ = q, and p∗ = p. It is
straightforward to check that, for all u ∈ c0 and all n ∈ N,

n∑
j=1

u∗j = max
i1<i2<···<in

n∑
j=1

|uij | .
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Consequently, for all u, v ∈ c0, (u+ v)∗ ≺≺ u∗ + v∗. Therefore, for all n ∈ N,

n∑
j=1

w∗j =

n∑
j=1

(
(1− t)y + tz

)∗
j

≤ (1− t)
n∑
j=1

y∗j + t

n∑
j=1

z∗j

≤ (1− t)
n∑
j=1

x∗j + t

n∑
j=1

q∗j

=

n∑
j=1

(
(1− t)xj + t qj

)
=

n∑
j=1

pj

=

n∑
j=1

p∗j .

Therefore w ≺≺ p. This proves that w ∈ riwm(S) and riwm(S) is convex.

The next result establishes the relationship between the various rearrange-
ment invariant hulls.

Lemma 3 Let X be a Banach space with a symmetric basis. If S is a subset
of X, then

co ri(S) = co ri(S) = riwm(S) .

Proof Without loss of generality, assume that X has a 1-symmetric basis. The
first equality is easy: co ri(S) ⊆ co riS ⊆ co

(
co (ri S)

)
= co ri S.

Since, by Lemma 2, riwm(S) is a convex, rearrangement invariant set con-
taining S, it follows that co ri(S) ⊆ riwm(S). Therefore co ri(S) ⊆ riwm(S).

It remains to show that riwm(S) ⊆ co ri(S). Fix y ∈ riwm(S).

Case 1: Assume that y∗ = y. By hypothesis y ≺≺ x for some x ∈ co(S∗) and
note that x∗ = x. Then, for all n ∈ N,

n∑
j=1

yj ≤
n∑
j=1

xj .

If n ∈ N is fixed, the above shows that Pny ≺≺ Pnx. By Markus’ theo-

rem, Pny ∈ co Symn(Pnx). Thus, there exist finite sequences
(
g
(n)
β

)
β∈Fn

in

Symn(Pnx) and
(
t
(n)
β

)
β∈Fn

in [0, 1] such that
∑
β∈Fn t

(n)
β = 1 and

Pny =
∑
β∈Fn

t
(n)
β g

(n)
β .
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We now define the finite sequence
(
h
(n)
β

)
β∈Fn

in ri{x} by

h
(n)
β = (g

(n)
β,1, . . . , g

(n)
β,n, xn+1, xn+2, xn+3, . . . ) for all β ∈ Fn .

We claim that each h
(n)
β ∈ co ri(S). Indeed, since x ∈ co(S∗), there exist

z1, . . . , zν ∈ S∗ ⊆ ri(S), and s1, . . . , sν ∈ [0, 1] summing to 1, such that x =∑ν
k=1 sk zk. Clearly, by the construction, for each n ∈ N and for every β ∈ Fn,

h
(n)
β =

(
ηn,β,j xρn,β(j)

)
j∈N, for some one-to-one and onto function ρn,β : N −→

N, and some sequence (ηn,β,j)j∈N with values in {−1, 1}. From above,

xi =

ν∑
k=1

sk zk,i for i ∈ N .

Fix n ∈ N and then fix β ∈ Fn. Clearly,

h
(n)
β,j = ηn,β,j xρn,β(j) =

ν∑
k=1

sk ηn,β,j zk,ρn,β(j) for j ∈ N .

If k ∈ {1, . . . , ν}, define ψ
(n,k)
β = (ψ

(n,k)
β,j )j∈N ∈ c0 by

ψ
(n,k)
β,j = ηn,β,j zk,ρn,β(j) for j ∈ N .

Then

h
(n)
β =

ν∑
k=1

sk ψ
(n,k)
β

and, since
(
ψ
(n,k)
β

)∗
= z∗k = zk, it follows that ψ

(n,k)
β ∈ ri(S) and h

(n)
β ∈

co ri(S) for every n ∈ N and β ∈ Fn.
Therefore we may define H(n) ∈ co ri(S) by

H(n) =
∑
β∈Fn

t
(n)
β h

(n)
β .

If n ∈ N and Qn = I − Pn, then

H(n) − Pny = Qnx

and

‖y −H(n)‖ ≤ ‖y − Pny‖+ ‖Pny −H(n)‖ = ‖Qny‖+ ‖Qnx‖ .

Since the sequences (‖Qnx‖) and (‖Qny‖) converge to 0, the sequence (H(n))
converges to y and y ∈ co ri(S).

Case 2: Assume that y ∈ riwm(S) is arbitrary. Then y ≺≺ x for some x ∈
coS∗. So x∗ = x and, for all n ∈ N,

n∑
j=1

y∗j ≤
n∑
j=1

xj .
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As in Case 1, for each n ∈ N, there exists a finite sequence
(
h
(n)
β

)
β∈Fn

in

co ri(S) and H(n) ∈ co ri(S) of the form

H(n) =
∑
β∈Fn

t
(n)
β h

(n)
β

such that the sequence (H(n)) converges to y∗

There exists a one-to-one mapping π : N→ N such that y∗j = |yπ(j)| for all
j ∈ N. Thus, for each coordinate j ∈ N, there exists επ(j) ∈ {−1, 1} such that
y∗j = επ(j) yπ(j). For each n ∈ N and j ∈ N, define

J
(n)
j = επ(j)H

(n)
j =

∑
β∈Fn

t
(n)
β επ(j) h

(n)
β,j .

Then, for every n ∈ N, J (n) ∈ co ri(S) and, by the rearrangement invariance
of the norm, the sequence (J (n)) converges to yπ. Let A := Range(π), which
is an infinite subset of N. Then, for all k ∈ N \A,

|yk| ≤ |yπ(j)| = y∗j for all j ∈ N .

Since y∗ ∈ c0, it follows that yk = 0 for all k ∈ N \ A. Consider the inverse

mapping σ = π−1 : A → N. Fix n ∈ N and then fix β ∈ Fn. Define ϕ
(n)
β =(

ϕ
(n)
β,k

)
∈ c0 by

ϕ
(n)
β,k =

{
εk h

(n)
β,σ(k) for all k ∈ A

0 for all k ∈ N \A .

Note that, for all β ∈ Fn, ϕ
(n)
β ∈ co ri(S). Then, if Φ(n) ∈ co ri(S) is defined

by

Φ(n) =
∑
β∈Fn

t
(n)
β ϕ

(n)
β ,

the rearrangement invariance of the norm implies that ‖y−Φ(n)‖ = ‖yπ−J (n)‖.
Since the sequence (J (n)) converges to yπ, (Φ(n)) converges to y. Thus y ∈
co ri(S), completing the proof of the Lemma 3.

Lemma 4 Let U be a rearrangement invariant subset of a Banach space X
with a symmetric basis. Then U

norm
is rearrangement invariant.

Proof Without loss of generality, let X have a 1-symmetric basis. Let z ∈ c0
be such that z∗ = w∗ for some w ∈ U

norm
. We will show that z ∈ U

norm
.

There exists a sequence (xn)n∈N in U converging to w. Markus’ Inequality
[10, Theorem 5.4] states that for all u, v ∈ c0, u∗ − v∗ ≺≺ u − v. So, by the
domination property of X, each w∗ − x∗n ∈ X and

‖w∗ − x∗n‖ ≤ ‖w − xn‖ .

Therefore (x∗n) converges to w∗ and, since U is rearrangement invariant, x∗n ∈
U for each n ∈ N. Therefore, z∗ = w∗ ∈ Unorm

. (Note that, in [10], Markus’
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Inequality is stated for compact operators on `2. That it applies in our setting
is seen by considering diagonal operators.)

There exists a one-to-one mapping π : N→ N such that z∗j = |zπ(j)|, for all
j ∈ N. Thus, for each coordinate j ∈ N, there exists επ(j) ∈ {−1, 1} such that
z∗j = επ(j) zπ(j). An argument similar to the argument in Case 2 of Lemma 3,
using the rearrangement invariance of the set U and the norm ‖ · ‖, implies
that z ∈ Unorm

.

Proof (Proof of Lemma 1. ) Let S ⊆ X and assume that X is a Banach
space with a 1-symmetric basis. Clearly S ⊆ ri(S) and co(S) ⊆ co ri(S). By
Lemma 3, co(S) ⊆ riwm(S). Since riwm(S) is convex and rearrangement invari-
ant, Lemma 4 implies that riwm(S) is rearrangement invariant. Consequently,
ri co(S) ⊆ riwm(S) and ri co(S) ⊆ riwm(S). A final application of Lemma 3
yields that ri co(S) ⊆ co ri(S), completing the proof of the lemma.
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6. G. Köthe, Topological Vector Spaces I, Springer-Verlag New York, Inc., 1969.
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