Errata for An Experimental Introduction to Number Theory

Benjamin Hutz

Department of Mathematics and Statistics, Saint Louis University

Email address: benjamin.hutz@slu.edu
The trial division algorithm (Algorithm 0.1) is missing divisors.

Algorithm 0.1 Trial Division

Input: a positive integer \(n \geq 1 \)

Output: a list of divisors

Algorithm:

1. Repeat until \(d > \sqrt{n} \).
 a. If \(d \) divides \(n \), add \(d \) and \(\frac{n}{d} \) to the list of divisors.
 b. Increase \(d \) by one.

2. Return the list of divisors

- Equation in middle of page 25. \(\pi(100) = 25 \) so that \(\frac{\pi(100)}{100} = 0.25 \). Also needs to be corrected in the subsequent table.
- Exercise 3.4a needs to have a relatively prime numerator.

 \((3.4)\) Compute the following Jacobi symbols \(\left(\frac{a}{n} \right) \). Determine whether \(a \) is quadratic residue or non-residue modulo \(n \).

 a. \(\left(\frac{11}{77} \right) \)

 b. \(\left(\frac{17}{37} \right) \)

- page 66. Statement of Theorem 3.7 should read: If \(p > 2 \) is a prime and \(a \) is an integer not divisible by \(p \), then...

- In proof of the Law of Quadratic Reciprocity:

 a. Bottom of page 71, the equation should read
 \[
 x_1^2 + x_2^2 - x_3^2 + \cdots + x_p^2 \equiv 1 - 2x_1x_2 \pmod{q}.
 \]

 b. There are a couple extra closing parenthesis in the sequence of equations (13)

 c. The equations on the top of page 73 are missing a couple places where \((-1)^e \) should have been a Legendre Symbol \(\left(\frac{-1}{q} \right)^e \).

- page 75. Theorem 3.22: parts (c), (d), and (e) also require \(m \) and \(n \) to be odd.

- page 79. First line of proof of Theorem 3.37. It should read: \(a = g^k \) and \(x = g^y \) for some integers \(k \) and \(y \).

- page 80. the 3rd line should read: \(\varphi(n) = 6 \)

- page 82. Fifth line of proof of Lemma 3.42. It should read: \(r | xy \).

- page 83. end of proof of Lemma 3.44, \(g + p \) should be \(g + n \).

- page 88. Exercise 3.20: parts (c), (d), and (e) also require \(m \) and \(n \) to be odd.
• page 89. Exploration 3.29. (a),(b) should be $n = 2^k$ and n an odd prime power.
• page 112. Theorem 5.10: The first equation in the proof should start $\sum_{d\mid p^e} \varphi(d)$
• page 194. First displayed equation should read $14 = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3$.
• page 195. Second line of displayed equation is missing c_i in the middle term $= c_0 + \sum_{i=1}^d c_i x^i + \sum_{i=1}^d ic_i x^{i-1} y + \sum_{i=1}^d c_i h(x, y) y^2$
• page 259. The resultant is 48