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The subject of topology encompasses a huge swath of modern mathematics, and yet
many undergraduates have never heard of it. One reason for this is that there is a relatively
high barrier to entry in terms of definitions and background, so it tends to be taught in
graduate and advanced undergraduate courses.

One of the most immediately accessible parts of topology is a field called knot theory,
which is the study of circles tangled up in 3-dimensional space. Most of us have some
experience tying knots (shoelaces, for example), and thus have some intuition that can
help us when thinking about knot theory. I hope this short article interest piques your
interest in topology!

If you want more details, I encourage you to look at Colin Adam’s excellent text [1],
which was the primary resource I used in preparing this.

1 Knots

Whatever the definition of a knot is, it should rigorously model the following situation:
you have a string which is tangled up in some way, and you attach the 2 loose ends to
each other. This could be by gluing them, taping them, or by tying a knot, although the
last method is linguistically problematic for obvious reasons. The result is a circular string
which you can play with, and which we will call a knot. Maybe if you fiddle around with
it for long enough, you can untangle it to a circle which lies flat on the table—no cutting
allowed though—in this case, the knot you created is what we call the unknot. Otherwise,
your string is knotted in some intrinsic sense. This knotting phenomenon is what knot
theory explores.

If you do not like thinking of your mathematical objects being made out of string and
tape, fine. Being more explicit, but still a little vague, think of a knot as an equivalence
classes of embeddings of the circle in three-dimensional space, where 2 embeddings are
equivalent if one can be continuously deformed to the other such that each intermediate
map is injective.
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Figure 1: These are all the same knot, as the deformations above show.

2 Connected sums of knots

You’re used to thinking about ways of combining two numbers to get another number
(addition, multiplication, exponentiation,...). We now define a way to combine two knots
and get another knot! It’s called connected sum. The connected sum of 2 knots, K1 andK2,
denoted K1#K2, is obtained in the following way: draw the two knots next to each other,
and remove a small segment from an outer arc of each knot. Now glue the 2 remaining
parts together as in Figure 2. It is not clear that this operation is well-defined, and in fact

Figure 2: A connected sum of 2 knots.

it is not unless we define it on oriented knots, where the gluing is determined by requiring
that it preserve orientation. You might be a little nervous that we had to make a choice
of which small segment to remove. This is not an issue as long as the segments we choose
do not traverse any crossings in our drawings of the knots. Can you prove this?

What can we say about #? Here are some observations:

(a) # is commutative.

(b) # is associative.

(c) if K is any knot and U is the unknot, then K#U = K.

One next natural question to ask is whether # has inverses. That is, does there exist
a knot K−1 such that K#K−1 = U? Could a knot like the one shown in Figure 2 be the
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unknot? It turns out that the answer is no, and the rest of this article will be devoted to
proving this result.

3 The classification of compact, connected, orientable sur-
faces

We need to make a few definitions.
A surface is a two-dimensional manifold. If you are not comfortable with that descrip-

tion, think of a surface as a space that looks like a two-dimensional plane if you zoom
in really close to any point. A surface with boundary is a space that looks like either a
two-dimensional plane or the upper half of a two-dimensional plane if you zoom in on any
point. The boundary of such a surface is composed of the “upper half plane” points. A
surface is connected if any 2 points in the surface can be connected by a path which is also
in the surface.

A surface is compact if it doesn’t “go off to infinity” anywhere. One way of phrasing
this rigorously is to say S is compact if every continuous function S → R has a maximum
value somewhere in S. For example, the unit disk

D = {(x, y) ∈ R2 | (x2 + y2 ≤ 1)}

is compact, but the punctured disk

D′ = {(x, y) ∈ R2 | 0 < (x2 + y2 ≤ 1)}

is not compact because the function D′ → R defined by (x, y) 7→ 1
x2+y2

is unbounded.
Alternatively, you can think of compact surfaces as the ones that can be constructed by
gluing together finitely many triangles.

Define an orientable surface to be a surface (possibly with boundary) which is 2-sided,
in the sense that if a tiny person is standing on the surface at a point P and takes a walk
which stays away from the boundary, it is impossible for them to return to P with their
head pointing in the opposite direction.

Remark 1. Orientability is usually defined in a different, more complicated way. But for
surfaces embedded in an orientable 3-manifold, orientability and 2-sidedness are equivalent
conditions. However, there are examples of three-dimensional manifolds which are nonori-
entable and admit two-sided embeddings of nonorientable surfaces (see [5], for example).
Since we are picturing our surfaces as sitting in R3, which is orientable (note that I have
not defined orientability for three-dimensional manifolds!), we are good to go.

All those definitions pay off in the following classification theorem.

Theorem 2. Every orientable, connected, compact surface with boundary is topologically
equivalent (or homeomorphic, if you know that word) to one of the surfaces shown in
Figure 3.
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Figure 3: Classification of orientable, connected, compact surfaces with boundary.

That is, any such surface is uniquely determined by its number of boundary components
and its number of “holes,” which we call the genus of the surface (the plural of genus is
genera). For a proof of Theorem 2, see [4].

4 Seifert surfaces

A Seifert surface for a knot K is a compact, orientable, connected surface with boundary
equal to K. By the previous section, any such surface must be topologically equivalent to
one of the surfaces in the second row of Figure 3 since it has only one boundary component.
Therefore any Seifert surface has a well-defined genus. The genus of a knot K, denoted
g(K), is the minimum genus of all Seifert surfaces for K.

Note that the definition above does not make sense unless we know that any knot
possesses at least one Seifert surface. But this fact is not that hard to prove. In fact,
Seifert himself gave a nice algorithm for producing a Seifert surface given a drawing of a
knot, which is illustrated in Figure 4.

1. Pick an orientation for your knot.

2. Start tracing around the knot in your chosen direction. When you get to a crossing
turn right or left, in whichever direction agrees with the orientation of the knot.
When you get back to where you started, start somewhere else in the drawing. Do
this until you’ve traced over all the arcs in the drawing.

3. In the previous step you created a collection of circles, called Seifert circles. Attach a
disk to each Seifert circle, so that each Seifert circle now bounds a disk. In the case
of concentric circles, vary the height of the disks so that the innermost Seifert circles
are the highest.
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4. At the site of each of the old crossings, attach the 2 neighboring disks by gluing in
a rectangular band with a half twist, the direction of the twist being determined by
the original crossing.

Figure 4

The resulting surface clearly has boundary the original knot. What is not immediately
clear is that the resulting surface is orientable. But this is easy enough to see, and I leave it
as an exercise for you. Here’s a hint: if the boundary of a disk has counterclockwise orien-
tation, paint its top red and its bottom blue. Do the opposite for disks whose boundaries
have clockwise orientation. Why does the way we glued in the bands allows us to extend
the red and blue paint over the entire surface such that the two colors never meet?

Example 3. Consider the Seifert surface for the trefoil knot shown Figure 5. By cutting
and pasting as shown in the figure, we can see that this surface is homeomorphic to torus
minus a disk. You can also see this using Euler characteristic, but cutting and pasting feels
more fun to me.

This shows that the genus of the trefoil knot is ≤ 1. If the trefoil knot had genus 0,
then it would bound a disk, but this is impossible (why?). Therefore we have determined
that the genus of the trefoil knot is 1.

Example 4. Let’s kick it up a notch. Consider the Seifert surface shown in Figure 6.
Well, according to our definition this is not strictly speaking a Seifert surface because its
boundary is not a knot, it is a link. A link is just a collection of circles embedded in 3
space, up to the same equivalence relation that we used to define knots. We broaden our
definition of Seifert surface to include those whose boundaries are links. This particular
link is called the Borromean rings, and has the neat property that no two of the three
circles are linked to each other, even though the link as a whole cannot be undone.

We can obtain the surface in Figure 6 by gluing together 3 hexagons in the way pre-
scribed by Figure 7, which shows that the surface is topologically equivalent to a torus
minus 3 disks. Therefore the genus of the Borromean rings is ≤ 1.
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Figure 5: Left: A Seifert surface for the trefoil knot. Center: by cutting the lefthand
surface open along a vertical plane intersecting the knot’s crossings, we see that the surface
is obtained by gluing together these two “3-shaped” surfaces in the way shown. Right: can
you see why this surface is the same as a torus minus a disk?

Figure 6: A Seifert surface for the Borromean rings.

Figure 7

Note that “topologically equivalent” does not mean that we can continuously and in-
jectively deform the surface in Figure 6 (à la our knot deformations) to look like the (4, 2)
entry of the table in Figure 3. Indeed, such a deformation would unlink the Borromean
rings, which is impossible. We will not prove that, although it is not hard—the 3 component
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unlink has a property called tricolorability which the Borromean rings do not have.
One last thing about this example—we have shown that the genus of the Borromean

rings is at most one, but we have not shown that the Borromean rings do not bound a
thrice-punctured sphere, so we cannot conclude that their genus is actually 1. The genus
is in fact 1, but the only proof I am aware of uses the Thurston norm on homology, which
falls beyond the scope of this talk.

5 Main Theorem

It is time to finally get around to resolving that question about “inverses” of knots from
Section 2. Conveniently, this follows immediately from the following theorem describing
the relationship between genus and connected sum.

Theorem 5. Let K1 and K2 be knots. Then g(K1#K2) = g(K1) + g(K2).

Proof. First, observe that g(K1#K2) ≤ g(K1) + g(K2) because you can attach minimal
genus Seifert surfaces for K1 and K2 by a rectangular band to get a Seifert surface for
K1#K2 whose genus is the sum of the original two.

Now we prove that the reverse inequality holds. Take a Seifert surface Σ for K1#K2

with minimal genus. By assumption, there exists a sphere S, punctured twice by K1#K2,
which separates K1 from K2 (see Figure 8).

Figure 8: Given a connected sum K1#K2, there is always a sphere separating K1 from K2

and intersecting K1#K2 exactly twice. How might a Seifert surface for K1#K2 intersect
this sphere?

By perturbing the sphere ever so slightly, we can preserve this separation property and
guarantee that Σ intersects S in arcs, all but one of which are circles (the last one is a
path P between the 2 punctures). The fact that we can do this follows from the theory of
transversality, which you can read about in [3] if you are interested.

If there are no circles on the surface of S, we are done—by cutting along P we do
not change the genus and we obtain Seifert surfaces for K1 and K2, so g(K1#K2) ≥
g(K1) + g(K2).
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Otherwise there is an innermost circle on S, and by doubling S inside the circle we
create a new Seifert surface which intersects S in one less circle.

Figure 9: Our Seifert surface Σ intersects the sphere S (green) in one arc and some collection
of circles. Look at an innermost circle (left). Near to the innermost circle, Σ (pink) is as
shown the center picture. We can cut Σ along the circle and cap it off as shown on the
right to get a new surface that intersects S in one less circle.

If the resulting surface is disconnected, discard the component which does not connect to
the knot. This surgery does not increase the genus, because it increases Euler characteristic
by 2 without changing the number of boundary components. As an aside, this even shows
that we always create a sphere component by this surgery, since g(Σ) is minimal.

By repeating this type of surgery, we eventually reduce the number of intersecting
circles to 0, so we are finished.

Corollary 6. If either K1 or K2 is nontrivial, then K1#K2 is not the unknot.

Proof. As we remarked earlier, the only knot whose genus is 0 is the unknot.
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