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Abstract. Let φ be a pseudo-Anosov flow on a closed oriented atoroidal 3-manifold M .
We show that if F is any taut foliation almost transverse to φ, then the action of π1pMq

on the boundary of the flow space, together with a natural collection of explicitly described
monotone maps, defines a universal circle for F in the sense of Thurston and Calegari–
Dunfield.

1. Introduction

In this article we establish a basic relationship between taut foliations, pseudo-Anosov
flows, and universal circles. We describe some of the main objects before summarizing our
results. All of the 3-manifolds we consider are closed, connected, and oriented.

1.1. Circle actions from taut foliations. Given a taut foliation F of an irreducible,
atoroidal 3-manifold M , a universal circle for F is a way of organizing the ideal geome-
try of the leaves of F . Being only slightly more specific, a universal circle for F is a circle
S1
univ and a faithful representation

ρ : π1pMq Ñ Homeo`pS1
univq,

together with a family of monotone maps. For each leaf of the lift of F to the universal cover
of M , there is an associated monotone map from S1

univ to the ideal boundary of the leaf. The
collection of these ideal boundaries is acted upon by π1pMq, and the monotone maps are in
particular required to intertwine this action with ρ. For more, see Definition 5.1.

Thurston and Calegari–Dunfield proved that every taut foliation of a closed, oriented,
irreducible, atoroidal 3-manifold has a universal circle [CD03]. We remark that the word
“universal” does not refer to any kind of uniqueness: a universal circle for such a foliation F
is in fact never unique, although each universal circle does have a unique minimal quotient
in a certain sense (see [Cal06, §5.1]).

1.2. Circle actions from pseudo-Anosov flows. Let φ be a pseudo-Anosov flow on a

3-manifold M (see Section 2.2), and let rφ be its lift to the universal cover ĂM of M . Fenley

and Mosher proved that the quotient of ĂM by the flowlines of rφ is a plane O, on which
π1pMq acts by orientation preserving homeomorphisms. The stable and unstable foliations
of φ induce singular foliations on O, and Fenley used these foliations to construct a natural
compactification of O by a circle BO, such that the π1-action on O induces a faithful action
on BO by orientation preserving homeomorphisms. See Section 2.3.
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Figure 1. For any leaf λ of rF , its projection Ωλ to the flow space O of φ is a
region bounded by lines in leaves of the stable and unstable foliations. These
frontier components can be proper subsets of leaves, and can share ideal points
in the ideal boundary of O. Although this picture may evoke geodesics in the
hyperbolic plane, there is no natural geometric structure on O.

1.3. Summary of main results. This article is concerned with the following situation: φ is
a pseudo-Anosov flow on an an irreducible atoroidal 3-manifold M , and F is a taut foliation
of M almost transverse to φ. This means that F is cooriented and positively transverse to a
“dynamic blowup” of φ, see Section 2.2. We will also refer to this blowup as φ.

Denote the lift of F to ĂM by rF . Each leaf λ of rF can be projected to the plane O, and
Fenley showed that its projection Ωλ is a region whose frontier is a disjoint union of properly
embedded lines in leaves of the stable and unstable foliations [Fen09]. The accumulation
points of Ωλ in BO form an uncountable closed set whose complement is a collection of open
intervals spanned by the frontier components. See Figure 1.

In Section 3, we show that there is a natural monotone map πλ from BO to the ideal
boundary of λ that in particular collapses all these open intervals. We take this as our

monotone map πλ : BO Ñ Bλ for each leaf λ of rF . After verifying the other conditions of the
definition, we prove this gives a universal circle for F in Theorem 5.2. Consequently:

Theorem 1.1 (Universal circles from flow space boundaries). Let M be an atoroidal 3-
manifold with a pseudo-Anosov flow φ, and let F be any taut foliation almost transverse to
φ. Then the action π1pMq ↷ BO, together with the family of monotone maps tπλu, defines
a universal circle for F .

Further, we prove in Proposition 7.2 that this is a “minimal” universal circle unless φ is a
skew Anosov flow which is not regulating for F ; see Section 7 for definitions.

As a consequence, if F is almost transverse to 2 distinct (not orbit equivalent) pseudo-
Anosov flows, Theorem 1.1, together with the main result of [BFM22], gives 2 distinct (not
conjugate) minimal universal circles for F . It is simple to build examples where this occurs
using the Gabai–Mosher construction of pseudo-Anosov flows almost transverse to finite depth
foliations. While this construction is not fully in the literature, it was partially written down
by Mosher in [Mos96] and is being finished by Landry–Tsang in [LT24] and work in progress.
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The proof of Theorem 1.1 is relatively nonconstructive, in the sense that it does not give
an explicit description of the collapsing maps tπλu. While it tells us that the intervals in BO
spanned by frontier components of Ωλ are collapsed by πλ, it does not say whether any other
collapsing happens. Via a detailed analysis of the flow space of φ, we are able to give a clean
characterization of each gap (i.e. interior of a nontrivial point preimage):

Theorem 1.2 (Characterizing the gaps). Each gap of πλ is spanned by a finite sequence of
frontier components of Ωλ, each sharing an ideal endpoint with the next. Further, the length
of such a sequence is uniformly bounded independently of λ.

Translating the first sentence of this characterization to Figure 1, it tells us that two points
are identified by the monotone map πλ : BO Ñ Bλ if and only if there is an arc in BO between
them meeting at most finitely many points in the limit set of Ωλ.

Finally, in the course of proving the above results, we also prove in Proposition 6.3 that if
φ is a non R-covered pseudo-Anosov flow on a 3-manifold M , not necessarily atoroidal, then
the action of π1pMq on BO is minimal. This was proven in the case where φ has no perfect
fits by Fenley [Fen12, Main Theorem], and for Anosov flows by Bonatti [Bon, Theorem 5].

1.4. The flows (almost) transverse to a foliation. We conclude the introduction by
discussing the following question.

Question 1.3. Let F be a taut foliation of an atoroidal 3-manifold M . How can we classify
the collection of pseudo-Anosov flows almost transverse to F?

Here, flows are considered up to orbit equivalence, by which we mean two flows are equiv-
alent if there is a homeomorphism M Ñ M , isotopic to the identity, which sends flowlines to
flowlines in an orientation-preserving manner.

Question 1.3 has been completely answered if F is R-covered, meaning that the leaf space
of its lift to the universal cover of M is a line. Calegari and Fenley separately showed in
[Cal00] and [Fen02] that in this case F it is transverse to a regulating (see Section 7) pseudo-
Anosov flow, which Fenley additionally showed in [Fen12, Theorem G] has no perfect fits (see
Section 2.3). Fenley further showed in [Fen13] that this flow is the unique pseudo-Anosov
flow transverse to F , unless F is topologically equivalent to the stable or unstable foliation
of a skew Anosov flow φskew, up to collapsing pockets of parallel leaves. In the latter case, F
is transverse to exactly one additional flow: a new flow obtained by “tilting” φskew slightly,
which is equivalent to φskew by structural stability (see [Fen05]). This tilted flow is not
regulating for F . Finally, we remark that in the R-covered case transversality and almost
transversality are equivalent, so this resolves Question 1.3 if F is R-covered.

Perhaps the simplest class of foliations which are not R-covered is the depth one foliations,
i.e. foliations with finitely many compact leaves and all other leaves accumulating only on
the compact ones. Junzhi Huang has shown recently that if F is a depth one foliation and φ
is a pseudo-Anosov flow with no perfect fits transverse to F , the “universal circle of leftmost
sections” constructed by Calegari–Dunfield can be identified equivariantly with BO [Hua24].
In this setting, Huang further shows that φ is the unique pseudo-Anosov flow with no perfect
fits transverse to F . Using Theorem 1.2 and Huang’s result, we prove in Theorem 8.5 that in
fact φ is the unique pseudo-Anosov flow transverse to F , perfect fits or not. More generally,
we make the following conjecture.

Conjecture 1.4. Let F be a taut foliation of an atoroidal 3-manifold M which is not R-
covered. If F is almost transverse to a pseudo-Anosov flow φ with no perfect fits, then φ is
the unique pseudo-Anosov flow almost transverse to φ.
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We also propose the following general strategy toward Question 1.3. First, given a taut
foliation F of an irreducible, atoroidal 3-manifold M , let PApFq be the set of all pseudo-
Anosov flows that are almost transverse to F , up to orbit equivalence. Also, let UCpFq be the
set of π1pMq circle actions arising from universal circles of F , considered up to semiconjugacy.

Conjecture 1.5. Let F be a taut foliation of an atoroidal 3-manifold M which is not R-
covered. The assignment φ ÞÑ pπ1pMq ↷ BOφq from Theorem 1.1 determines a bijection

PApFq Ñ UCpFq.

We remark that since F is not R-covered, any almost transverse flow φ is not R-covered
([Fen05, Theorem C]), and so the action π1pMq ↷ BO is minimal in the dynamical sense
(i.e. every orbit is dense) by Proposition 6.3. Moreover, by a result of Ghys, the notions of
conjugacy and semiconjugacy agree for dynamically minimal circle actions (see e.g. [BFH16,
Proposition 4.8]).

2. Foliations, flows, and circles

2.1. Taut foliations and universal circles. Let F be a taut foliation of a closed, oriented,
irreducible 3-manifoldM . By this we mean F is a cooriented foliation ofM by surfaces, such
that there exists a closed curve positively transverse to F and intersecting every leaf. This
simple condition on F has some nice consequences. By Novikov’s theorem [Nov65], any closed
curve transverse to F is homotopically nontrivial. Further, each leaf of F is π1-injective so

F lifts to a foliation rF of ĂM by planes.

Preimages of leaves of F under the universal covering map foliate the universal cover ĂM

of M ; we denote this foliation of ĂM by rF . If we collapse the leaves of rF , we obtain the leaf
space of F , denoted L. This is a (typically non-Hausdorff) 1-manifold.

If we additionally assume that M is atoroidal, meaning that π1pMq contains no Z ‘ Z
subgroup, then a powerful theorem of Candel concerning Riemann surface laminations implies
that there is a Riemannian metric g on M which pulls back to a hyperbolic metric on each
leaf of F [Can93]. We call such a metric g a leafwise hyperbolic metric. This endows each leaf
of L with a circle at infinity. In fact, these circles at infinity are well-defined independently of
the choice of g: for any other metric g1, the ratio g1{g is uniformly bounded by compactness

of M and so the induced metrics on any leaf of rF are uniformly quasi-isometric.
The union of these ideal circles is the total space E8 of a circle bundle over L which we

will topologize and describe further in Section 4.

2.2. Pseudo-Anosov flows and taut foliations. A pseudo-Anosov flow φ on our closed
oriented 3-manifold M is a flow that is Anosov on the complement of finitely many closed
singular orbits, each of which has a neighborhood modeled on a branched cover of a closed
orbit of an Anosov flow. In particular there are two singular foliations W s and W u called the
stable and unstable foliations, respectively. Orbits in the same stable leaf converge in forward
time, and orbits in the same unstable leaf converge in backward time. For a great discussion
of the precise definition of pseudo-Anosov flow, see [AT24].

It is convenient for us to expand the class of pseudo-Anosov flows by considering almost
pseudo-Anosov flows. An almost pseudo-Anosov flow is the result of replacing finitely many
singular orbits with flow-invariant annulus complexes in a specific way, an operation called
“dynamic blowup.” See Figure 2. Each annulus in the blowup complex is called a blowup
annulus. If φ1 is an almost pseudo-Anosov flow obtained from a pseudo-Anosov flow φ in this
way, we say φ1 is a dynamic blowup of φ. Finally, we say a codimension one foliation F of M
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Figure 2. Left: a 3-pronged singular orbit of a pseudo-Anosov flow (the flow
is upward, the stable foliation is red, and the unstable is blue). Right: a
dynamic blowup of a 3-pronged singular orbit. If more prongs are present,
then more complex blowups are possible.

is almost transverse to φ if it is transverse to some dynamic blowup of φ. For more details
see [Mos96] or our treatment in [LMT24].

Mosher proved that an (almost) pseudo-Anosov flow on an atoroidal 3-manifold is always
transitive, meaning it has a dense orbit [Mos92, Prop 2.7] (see also [BBM24, Corollary 1.6]).
As such, if F is a foliation of M almost transverse to a pseudo-Anosov flow, then it is taut,
because we can find a closed transversal to all leaves by closing up a long flow segment.

2.3. The flow space and its boundary. Let φ be an almost pseudo-Anosov flow on M .

Let rφ be the lift of φ to the universal cover ĂM of M . The stable and unstable foliations W s

andW u lift to singular foliations ĂW s and ĂW u in ĂM . A half leaf of a leaf L ofW s{u containing
the lift of a periodic orbit is the closure of a component of L´ pall lifts of periodic orbitsq.

Let O be the quotient of ĂM by the flowlines of rφ, which we call the flow space of φ.
Fenley-Mosher proved that O is a plane [FM01, Proposition 4.2]. The 2-dimensional folia-

tions ĂW s and ĂW u project to 1-dimensional singular foliations of O that we denote Os and
Ou, respectively. We call these the stable and unstable foliations of O. The half leaves of this

foliation are the projections of the half leaves of ĂW s{u. The action of π1pMq by deck trans-
formations descends to an action of π1pMq on O by orientation-preserving homeomorphisms
that preserves the stable and unstable foliations.

Now let rF be the lift of rF to ĂM , and let λ be a leaf of rF . The intersection of λ with leaves of
ĂW s and ĂW u define two singular foliations of λ that we denote by λs and λu. A foliation ray of
Os{u or λs{u is a proper embedding of r0,8q into a leaf of the corresponding singular foliation.
A perfect fit rectangle in O is the image of a proper embedding of pr0, 1s ˆ r0, 1sq ´ p1, 1q into
O, such that vertical and horizontal lines are mapped into leaves of the stable and unstable
foliations. We say the foliation rays corresponding to t1u ˆ r0, 1q and r0, 1q ˆ t1u make a
perfect fit, and more generally we say that two foliation rays make a perfect fit if they have
subrays lying in the boundary of a perfect fit rectangle as above. See Figure 3. Intuitively
these rays meet “at infinity,” and one makes this precise by defining an ideal boundary for
O.

In [Fen12], Fenley shows that the flow space has a natural compactification by a circle BO
to a closed disk O. Moreover, the action of π1pMq on O extends to one on O, which in turn



6 M.P. LANDRY, Y.N. MINSKY, AND S.J. TAYLOR

Figure 3. In both pictures, the horizontal line denotes BO and O lies above
it. Left: two foliation rays making a perfect fit, and an associated perfect fit
rectangle. Right: any two foliation rays in BO with the same endpoint in BO
are part of a finite sequence of foliation rays ending at that point, each making
a perfect fit with the next.

restricts to a faithful action

ρφ : π1pMq Ñ Homeo`pBOq

In O, every foliation ray limits on a unique point, and it is a property of the construction
that the endpoints of foliation rays are dense in BO. Moreover, two foliation rays in O have
the same endpoint p P BO if and only if they are part of a finite sequence of rays ending at
p, each making a perfect fit with the next ([Fen12, Lemma 3.20]), see Figure 3.

A fundamental fact about the boundary BO is that if two leaves of Os and/or Ou share
an ideal point in BO, then they are disjoint in O. An abstract characterization of BO that
includes all of the required properties can also be found in [Bon, Theorem 3].

2.4. Shadows of leaves. We now mention some background on almost pseudo-Anosov flows
transverse to foliations, the reference for which is [Fen09, §§3-4]. We will work in the setting
where φ is an almost pseudo-Anosov flow transverse to a foliation F of M .

Projection to the flow space O carries a leaf λ of rF homeomorphically onto its image,
which we denote by Ωλ. We sometimes call this open set the shadow of λ. The topological
frontier of Ωλ in O is denoted frΩλ. The closure of Ωλ in O is obtained by taking the union
of Ωλ with frΩλ and its limit set B8Ωλ Ă BO, and we denote this closure by Ωλ.

A leaf L of Os or Ou is either homeomorphic to R or homeomorphic to compact simplicial
tree with at least one vertex of degree ě 3, without its degree 1 vertices. In the first case we
say that L is regular, and in the second we say that L is singular. A point p P O is a singular
point if all leaves of Os and Ou through p are singular and is otherwise a regular point.

Given a leaf L as above, a leaf face ℓ in L is a properly embedded copy of R in L with the
property that at least one of the two components of O ´ ℓ contains no other points of L. Be
advised that Fenley calls a leaf face a “line leaf.”

A leaf slice of L is a properly embedded copy of R in L. Let ℓ be a leaf slice of a singular
stable leaf L, and let L1 be the corresponding leaf of the unstable foliation. If ℓ has a side
such that a single unstable half leaf (this could be a blowup segment, i.e. the projection of
the lift of a blowup annulus) emanates from ℓ into that side, we say ℓ is regular to that side.
The symmetric definition holds for stable leaf slices, and we also declare that regular leaves
are regular to both of their sides. A general leaf slice may be regular to zero, one, or two of
its sides. Some of these definitions are illustrated in Figure 4.
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Figure 4. Two pictures of O with some example leaves of Os{u. The circle is
BO. Left: a is a regular point, and b is a singular point. The black segments
are blowup segments. Right: two leaf slices. The lower one is regular only to
its top side. The upper one is regular to neither of its sides.

Returning to our leaf λ of rF and its shadow Ωλ Ă O, Fenley shows that fr Ωλ is a disjoint
union of leaf slices, each of which is regular to the side containing Ωλ. See Figure 1.

Lemma 2.1. The closure Ωλ is a disk in O that meets BO in B8Ωλ and O in Ωλ Y fr Ωλ.

Proof. The only thing to show is that Ωλ is a disk. We first claim that Ωλ ´ Ωλ is a circle.
For every component of fr Ωλ, define a homeomorphism between the component and the
corresponding segment in BO. Then glue all these maps together to get a map Ωλ´Ωλ Ñ BO.
The result is continuous by the pasting lemma and the inverses for the restrictions to the
frontier components glue to give a continuous inverse. Now Ωλ is a disk by the Schoenflies
theorem. □

Moving forward, we use BΩλ to denote the boundary of Ωλ, which is of course a circle. As
in Lemma 2.1, it is disjoint union of the limit set B8Ωλ Ă BO and the frontier fr Ωλ Ă O.

2.5. Circular orders. Let X be a set equipped with a map

x¨, ¨, ¨y : X3 Ñ t`1, 0,´1u.

One should think of the values in the range as specifying clockwise, neutral, and anticlockwise.
Suppose that

(a) xa, b, cy ‰ 0 precisely when a, b, c are all distinct, and
(b) for any a, b, c, d P X, xb, c, dy´xa, c, dy`xa, b, dy´xa, b, cy “ 0 (the cocycle condition).

Then we say that x¨, ¨, ¨y is a circular order on X, or sometimes simply that X is circularly
ordered if the circular order is implied. Given that we wish to think of X as similar to a circle,
condition (b) is natural: it says in particular that for any nondegenerate 3-simplex pa, b, c, dq

in the abstract simplex spanned by X, two of its (oriented) faces are oriented clockwise and
two are oriented anticlockwise; see [Thu98, Def. 2.1.2 and Fig. 1].

The triple pa, b, cq is called positive, negative, or degenerate if xa, b, cy is `1, ´1, or 0
respectively. The open interval pa, bq is the set of points x P X such that xa, x, by “ `1.
Replacing a parenthesis by a bracket denotes the inclusion of the corresponding endpoint.

If S1
X is an oriented circle, then there is a canonical circular order defined on triples of

distinct points pa, b, cq by xa, b, cy “ `1 if the oriented arc from a to c contains b, or else
xa, b, cy “ ´1. We will often use this order implicitly in what follows.

Finally, suppose Y is another circularly ordered set. A map f : X Ñ Y is monotone if
it sends no nondegenerate triple to one of the opposite sign. When X and Y are oriented
circles, a continuous map between them is monotone if and only if it has degree 1 and its
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point preimages are contractible. Given a monotone map of circles m : S1
X Ñ S1

Y , a gap of
m is a maximal open connected interval in S1

X sent by m to a single point. The core of m is
the complement of its gaps.

3. Monotone maps from bifoliations

We continue to work in the following setting: M is an atoroidal 3-manifold, φ is an almost
pseudo-Anosov flow on M transverse to a taut foliation F , and we have fixed a leafwise
hyperbolic metric on M that restricts to a hyperbolic metric on each leaf of F . In this

subsection we fix a leaf λ of rF , and denote its hyperbolic boundary by Bλ.

The two planes λ and Ωλ are equipped with pairs of singular foliations λs{u and Ω
s{u
λ ,

respectively. Moreover, the projection from ĂM to O restricts to a homeomorphism of these

planes carrying λs{u to Ω
s{u
λ .

Studying the ideal points of the leaves of these foliations will lead naturally to the existence
of a monotone map BΩλ Ñ Bλ between the planes’ boundaries. We begin with an observation
about stable and unstable foliation rays in Ωλ.

Observation 3.1 (Rays in a shadow). Foliation rays in Ωλ have well-defined endpoints in
BΩλ and the endpoints of all foliation rays (stable and unstable together) are dense, except
along blow up segments in the frontier.

Next, we record some fundamental properties of foliation rays in λ, due to Fenley.

Lemma 3.2 (Rays in a leaf, Fenley). Foliation rays in λ exhibit the following properties:

(i) [Fen09, Corollary 5.5]: Foliation rays in λ have well-defined endpoints in Bλ.
(ii) [Fen09, Prop 6.3]: The endpoints of stable foliation rays are dense in Bλ. The same

is true for unstable foliation rays.

The sets of foliation rays of λ and Ωλ are canonically identified, and we denote the set of
ends of these rays by E . There is a natural circular order on E : the ends of triples of distinct
rays are assigned ˘1 by considering the rays’ intersections with the boundaries of large disks.
The key point is that any two leaves of the bifoliation have compact intersection. For details
see [Fra13, Chapter 4] or [Bon, Section 2].

Now let Eλ and EΩ be the subsets of Bλ and BΩλ consisting of ideal points of stable and
unstable foliation rays. Each of these sets is embedded in an oriented circle and hence is
circularly ordered. Since Bλ and BΩλ are compactifications of isomorphic bifoliated planes,
and stable/unstable foliation rays have well-defined endpoints in both, we have maps

E

EΩ Eλ
which are evidently monotone. The next lemma says that the above diagram has a natural
completion to a commutative triangle of monotone maps.

Lemma 3.3. If two foliation rays r1, r2 have the same endpoints in BΩλ, then they have the
same endpoints in Bλ. Hence, the maps above induce a monotone map EΩ Ñ Eλ.

Proof. If the rays are distinct, they must end at a point in B8Ωλ Ă BO. Hence they are
joined by a sequence of perfect fits (see Section 2.3). We now observe that two rays making
a perfect fit must have the same endpoints in B8λ: there are no leaves of either foliation in
between them, so the endpoints must be the same by density of endpoints (Lemma 3.2(ii)).
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This induces a map EΩ Ñ Eλ completing the above diagram to a commutative triangle. This
map is monotone because the other two maps are. □

Let S1
X , S

1
Y be oriented circles, let A Ă S1

X , and let B Ă S1
Y be dense. It is a well known

exercise that a monotone surjection f : A Ñ B induces a unique continuous monotone map
F : S1

X Ñ S1
Y (necessarily defined at limit points by F plimpxnqq “ limpfpxnqq where pxnq is

any Cauchy sequence of points in A).

Hence we obtain a unique continuous monotone map BΩλ Ñ Bλ that extends the one in
Lemma 3.3. Fenley’s Lemma 3.2 gives a quick proof that this map collapses each leaf in the
frontier of Ωλ:

Lemma 3.4. If two foliation rays in Ωλ have endpoints in the same component of fr Ωλ, then
they have the same endpoint on Bλ.

Proof. The endpoints of leaves terminating at a component of fr Ωλ give an arc in Bλ con-
taining no endpoints of the other foliation. By density of endpoints (Lemma 3.2(ii)) it must
be a trivial arc, i.e. a point. □

Construction 3.5 (Monotone maps πλ : BO Ñ Bλ). Since the monotone map BΩλ Ñ Bλ
collapses the closure of each frontier leaf of Ωλ to a point by Lemma 3.4, it induces a unique
monotone map on BO that we denote by

πλ : BO Ñ Bλ.

In more detail, choose a homeomorphism h : BΩλ Ñ O fixing B8Ωλ, as in the proof of
Lemma 2.1. Precomposing BΩλ Ñ Bλ with h´1 gives the required monotone πλ : BO Ñ Bλ
since it is independent of the choice of h by Lemma 3.4.

If we replace φ by its associated pseudo-Anosov flow, BO is unchanged up to a canonical
equivariant identification. Hence we can view the maps πλ as having domain equal to the
boundary of the orbit space of this pseudo-Anosov flow. ♢

We will see in Section 6 that πλ collapses only finite chains of frontier components of Ωλ
that meet at ideal points in BO.

4. Continuity and the circle bundle at infinity

Recall from Section 2.1 that L denotes the leaf space of rF , i.e. the quotient of ĂM by the
leaves of F . The circle bundle at infinity associated to F is a circle bundle

E8 Ñ L,
the fiber over λ P L being the hyperbolic boundary Bλ of λ coming from a leafwise hyperbolic

metric. Given a leaf λ of rF , and p P λ, the endpoint map ep : UTppλq Ñ Bλ maps a unit
tangent vector at p to the ideal endpoint of the geodesic γ in λ with γp0q “ p and γ1p0q “ v.
Letting λ and p vary, we obtain a map

e : UT p rFq Ñ E8.

We endow E8 with the finest topology such that e is continuous. As Calegari points out in

[Cal07, §7.2], for any interval I transverse to rF , the map e8 restricts to a local homeomor-

phism UT p rFq|I Ñ E8. This gives E8 an atlas of cylindrical charts I ˆ S1.

In Construction 3.5 we built, for any λ P L, a surjection πλ : BO Ñ Bλ. Letting λ vary, we
obtain a surjection

π : L ˆ BO Ñ E8
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defined by πpλ, pq “ πλppq.
We will prove that π is continuous. The key ingredient to this is a lemma of Fenley saying

that endpoints of rays in E8 vary continuously with λ P L [Fen09, Lemma 6.2]:

Lemma 4.1 (Fenley). Let W be a leaf of ĂW s (or ĂW u), and let r be a foliation ray in W Xλ
containing no singular points. There is an open neighborhood U of λ in L so that for each
µ P U , W X µ contains a foliation ray rµ near r with the property that the map from U to
E8 sending µ to the ideal endpoint rµp8q P Bµ of rµ is continuous.

Using the definition of πλ, the following is immediate: if x P BO is the ideal endpoint
of a stable/unstable ray r in O that meets Ωλ for some λ P L, then µ ÞÑ πµpxq defines a
continuous map from some L-neighborhood of λ into E8.

This observation allows us to promote the continuity of leafwise maps to continuity of π:

Proposition 4.2. The map π : L ˆ BO Ñ E8 is continuous.

Proof. Fix any pλ, pq P L ˆ BO and a sequence pλn, pnq converging to pλ, pq. We will show
πλnppnq Ñ πλppq.

Let EO Ă BO be the dense set of endpoints of rays in BO. Choose x, y P Eλ so that
πλppq P px, yq. Let a and b be points in EO that are mapped by πλ to x and y, respectively.
By Lemma 4.1, we have πλipaq Ñ x and πλipbq Ñ y.

Note that p P pa, bq since πλ is monotone, so the pi eventually lie in pa, bq. Since each πλi
is monotone, we have πλippiq P rπλipaq, πλipbqs for all i. This forces any accumulation point
of pπλippiqqiě0 to lie in rx, ys. Since we are free to choose x and y as close as we like to πλppq,
this proves πλnppnq Ñ πλppq. Hence π is continuous at pp, λq. □

We remark that the powerful Leaf Pocket Theorem of Thurston and Calegari–Dunfield
([CD03, Theorem 5.2] plays an important role in the background of Proposition 4.2, because
Fenley’s proof of Lemma 4.1 uses the result in an essential way. The Leaf Pocket Theorem

says that a leaf of rF stays close to other leaves of rF along a dense set of directions, and is
the tool that allows Fenley to transport rays to nearby leaves in a controlled fashion.

5. Simultaneous universal circles

We continue to work with a taut foliation F of an atoroidal manifold M equipped with a
leafwise hyperbolic metric, and an almost pseudo-Anosov flow φ that is transverse to F .

Before defining universal circles, we remind the reader that, given a monotone map of
circles m : S1

X Ñ S1
Y , a gap of m is a maximal open connected interval in S1

X sent by m to a
single point. The core of m is the complement of its gaps.

Definition 5.1. A universal circle for F is a triple pS1
univ, tmλu, ρq consisting of a circle

S1
univ and a family of monotone maps tmλ : S

1
univ Ñ Bλ | λ P Lu, together with a faithful

representation
ρ : π1pMq Ñ Homeo`pS1

univq

such that the following hold.

(1) The map m : L ˆ S1
univ Ñ E8 defined by mpλ, pq “ mλppq is continuous.

(2) For each λ P L and g P π1pMq, the following diagram commutes:

S1
univ S1

univ

Bλ Bpgλq

ρpgq

mλ mgλ

g
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(3) If λ, λ1 are leaves of rF not connected by a transversal, then the core of πλ is contained
in a single gap of πλ1 . ♢

Thurston and Calegari–Dunfield proved that every taut foliation of a closed, oriented,
atoroidal 3-manifold has a universal circle [CD03, Theorem 6.2].

The original definition of a universal circle was given by Thurston in a series of lectures at
MSRI. According to Calegari, that definition was less axiomatic and did not feature condition
(3) [Cal07, p. 263]. The next definition was given by Calegari–Dunfield in [CD03] and agrees
with Definition 5.1 apart from not requiring condition (1). Despite the slight differences, the
Thurston and Calegari–Dunfield construction satisfies Definition 5.1, which is equivalent to
the definition in [Cal07].

Theorem 5.2. LetM be a closed oriented atoroidal manifold and φ a pseudo-Anosov flow al-
most transverse to a foliation F ofM . The circle BO, together with the faithful representation
ρφ : π1pMq Ñ Homeo`pBOq and the monotone maps πλ : BO Ñ Bλ from Construction 3.5,
comprise a universal circle for F .

Proof. In this setting condition (1) of Definition 5.1 is a restatement of Proposition 4.2. For
condition (2), given g P π1pMq and λ P L, the diagram commutes for points in EO and
continuity does the rest. Finally, for (3) note that if there is no transversal from λ to λ1,
then the shadows Ωλ and Ωλ1 are disjoint, so the core of each is contained in a gap of the
other. □

6. Fibers of the monotone maps

We are still fixing a closed oriented atoroidal 3-manifold M , a pseudo-Anosov flow φ, and
a foliation F almost transverse to φ.

Our goal in this section is to characterize the gaps of the monotone maps πλ from Theo-
rem 5.2 as follows: each gap is “spanned by a finite chain of frontier components of Ωλ.” We
will make this precise.

6.1. The flow space trichotomy. A pseudo-Anosov flow is called R-covered if the leaf
space of Os (or Ou) is homeomorphic to R. In this case the flow is actually Anosov and
not just pseudo-Anosov. By results of Fenley [Fen94] and Barbot [Bar95] the structure of
pO,Os,Ouq is either:

(1) trivial : there is a homeomorphism O Ñ R2 carrying Os and Ou to the foliations of
R2 by vertical and horizontal lines, or

(2) skew : there is a homeomorphism of O with the diagonal strip tpx, yq | |x ´ y| ă 1u

carrying Os and Ou to the foliations by vertical and horizontal lines.

In the trivial case, the flow is orbit-equivalent to the suspension of an Anosov diffeomorphism
of the torus [Bar95]. In the skew case we say the flow is skew Anosov. Otherwise, the flow is

(3) non R-covered : one of Os{u has non-Hausdorff leaf space, or the flow has at least one
singular orbit (perhaps both).

See [BFM22, Theorem 2.16] for a proof of this trichotomy working in the more general setting
of bifoliated planes satisfying certain axioms.

In the setting of this article, with our fixed objects M,F , φ, the fact that M is atoroidal
implies that φ is either skew Anosov or non R-covered. To this point it has not been necessary
to distinguish between these two cases, but it will be so in this section.
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6.2. Lozenges and periodic points. We say p P O is periodic if there is an element g that
fixes p P O. In this case, p corresponds to a periodic orbit γ of φ.

A lozenge in O is the image of a proper embedding of pI ˆ I ´ tp0, 0q, p1, 1quq Ñ O such
that vertical and horizontal lines in IˆI are mapped into stable and unstable leaves. A point
in a lozenge corresponding to p1, 0q or p0, 1q is called a corner point of that lozenge. If one
corner point of a lozenge is periodic, then so is the other, and they are fixed by a common
group element. Moreover, the two corresponding orbits in M are homotopic to each other’s
inverses (up to positive powers). If a periodic point is not the corner of any lozenge, we call
it a noncorner periodic point.

More generally, we will use the term lozenge to refer to any region of O that blows down
to a lozenge as above by collapsing blowup segments, and refer to the corners of a lozenge as
the preimages of the corner points under the collapsing. In general, the corner of a lozenge
will consist of either a single point or a union of blowup segments.

If g fixes two points p and p1 of O, then Fenley showed that p and p1 are connected by
a “chain of lozenges” [Fen95, Theorem 3.3] (see also [BFM22, Proposition 2.24]). That is,
there is a finite collection of lozenges L1, . . . , Ln such that p is a corner point of L1, p

1 is a
corner point of Ln, and Li shares a corner point with Li`1 for 1 ď i ď n ´ 1. In particular,
if there are no blowup segments in O then noncorner periodic points are exactly the periodic
points that are their stabilizers’ only fixed points.

If g fixes the periodic point p, then up to possibly replacing g by a higher power, we can
assume that the action of g fixes the stable and unstable leaves through p as well as their
endpoints in BO. There may be other points of O fixed by g, which by above are all corner
points of a family of lozenges whose union is connected. The action of g fixes all the lozenges
and hence all the endpoints of leaves through the corner points. If φ is non R-covered, then
the fixed point set of the action of g on BO is exactly the closure of these endpoints (see e.g.
[BFM22, Proposition 3.7]). If g fixes only finitely many points in O, then the fixed points
of its action on BO are exactly the ideal endpoints of the stable and unstable leaves through
the fixed points in O. Thus there are 2n ě 4 fixed points, and one sees that they alternate
between attracting and repelling. In this situation we say that g acts with multi sink-source
dynamics on BO.

Finally, if g P π1pMq fixes a leaf ℓ and an endpoint p of ℓ, then every leaf that makes a
perfect fit with ℓ at p is fixed by a power of g ([BFM22, Observation 2.10]). Hence, if two
foliation rays r and r1 in periodic leaves make a perfect fit, then the leaves containing r and
r1 are fixed by a common group element and hence connected by a chain of lozenges. Hence
r lies in a leaf containing a corner point.

6.3. Branching leaves. We say that a leaf of Os or Ou is a branching leaf if it is nonsepa-
rated from another leaf in the leaf space of Os or Ou, respectively, and otherwise we say the
leaf is nonbranching. A fundamental result of Fenley says that branching leaves are periodic,
and that there are finitely many branching leaves up to the action of π1pMq ([Fen99, Theo-
rem 4.9]). Combined with the fact that M is atoroidal, this will imply that any g P π1pMq

can preserve at most finitely many branching leaves. We will use this observation of Fenley
repeatedly, so we record it as a lemma along with another useful fact whose proof is the same.

Lemma 6.1 (Fenley). LetM be atoroidal. The action of g P π1pMq on O fixes at most finitely
many branching leaves, and finitely many leaves containing blowup segments. Moreover, the
number of such leaves fixed by g is uniformly bounded, independently of g.
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Figure 5. From the proofs of Lemma 6.2 and Proposition 8.2. For the latter:
none of the circled points can lie in Ωλ.

Proof. Suppose that g P π1pMq fixes infinitely many branching leaves. By Fenley’s finiteness
result above, there are two of them, ℓ1 and ℓ2, and some h P π1pMq such that ℓ1 “ h ¨ ℓ2.
Hence hgh´1 ¨ ℓ1 “ ℓ1, so hgh

´1 P stabpℓ1q. Fixing a generator γ for stabpℓ1q, there exist
integers k and ℓ so that g “ γk and hgh´1 “ γℓ, so

hγkh´1 “ γℓ.

However, Theorem 1 of [Sha01] implies that such a relation (with γ infinite order) does not
exist in an atoroidal 3-manifold group. Uniform boundedness follows from the result of Fenley
mentioned before the Lemma statement.

The proof for leaves containing blown segments is identical, since there are only finitely
many leaves in M containing blowup annuli. □

In particular, the above implies that only finitely many rays may terminate at a given
point in BO.

Recall from Section 6.2 that if g fixes a point in O as well as the half leaves based at p,
then every point in O fixed by g is a corner point of some lozenge, any two such points are
connected by a chain of lozenges, the collection of all such lozenges is fixed by g, and the
set of points in BO fixed by g is exactly the closure of the set of endpoints of all half leaves
through these corner points. Lemma 6.1 allows us to prove that the limit points of this set
are never endpoints of the half leaves:

Lemma 6.2. Let M be atoroidal. If g P π1pMq fixes a leaf ℓ and an endpoint y of ℓ, then
y P BO is a sink or source for the action π1pMq ↷ BO.

Proof. We already observed in Section 6.2 that isolated endpoints of leaves fixed by g are
sources or sinks, so it suffices to show that, in the case where g fixes infinitely many lozenges,
any accumulation point of endpoints of leaves fixed by g is not the endpoint of such a leaf.

Let L1, L2, L3, . . . be a chain of lozenges, so that adjacent terms intersect along a side or
corner. The key observation is that there is some n ě 0 such that Li and Li`1 intersect only
in their corners for all i ě n; otherwise, we would produce infinitely many branching leaves
fixed by g, contradicting Lemma 6.1. See Figure 5.

This implies that the set of all lozenges fixed by g consists of finitely many lozenges that
intersect along sides, and finitely many sequences of lozenges intersecting only along corners.
it follows that the endpoints of leaves fixed by g are isolated fixed points. □

If r and r1 are both stable, or both unstable, rays that end at the same point in BO and
are contained in leaves that are nonseparated from each other, then there is a third ray r2

contained in a leaf of the other foliation that makes a perfect fit with both (Section 2.3).
Further, there are two lozenges containing r, r1, r2 in their frontiers and meeting along the
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leaf containing r2. In particular, this implies that if p P O is a noncorner periodic point, then
the stable and unstable leaves through p are not branching.

If pℓnq is a sequence of leaves of Os or Ou limiting to a single leaf slice ℓ, then the endpoints
of the ℓn limit to the endpoints of ℓ (see [BFM22, Proposition 3.1]). This implies that if ℓ is
a leaf face in a nonbranching leaf, then the leaves which lie sufficiently close to ℓ on the side
to which it is regular have endpoints very close to the endpoints of ℓ.

6.4. Minimality of the boundary action. The following proposition was proved by Fenley
in the case of pseudo-Anosov flows with no perfect fits ([Fen12, Main Theorem]) and by
Bonatti for Anosov flows ([Bon, Theorem 5]).

Proposition 6.3. Let φ be a pseudo-Anosov flow on a 3-manifold M which is not necessarily
atoroidal. If φ is not R–covered, then the action π1pMq ↷ BO is minimal.

Proof. Fix p P BO and an open interval I Ă BO. The set of branching leaves is countable,
and it follows that the endpoints of nonbranching leaves are dense in BO; see e.g. [Bon,
Theorem 3]. Pick a ray r in a nonbranching leaf with rp8q P I. Since O is neither trivial
nor skew, the noncorner periodic points are dense in O by [BFM22, Lemma 2.30]. Take a
sequence of distinct noncorner periodic points pxiq converging to a point q in the interior of
r, and let gi P π1pMq be a generator of the stabilizer of xi. Since the xi are noncorner points,
xgiy ‰ xgjy for i ‰ j (see Section 6.2).

By construction, initial segments of foliation rays ri based at the xi converge to the subray
of r based at q, and since r is regular, we have that rip8q Ñ rp8q. Hence we can find
sufficiently large j ą i so that the foliation rays through xi and xj end in I. We conclude
that gi and gj act with multi sink-source dynamics, fixing only the endpoints of the foliation
rays based at xi and xj (e.g. by [BFM22, Prop. 3.7 and Lem. 3.8]), and that each of these
elements has a fixed point in I. The next lemma finishes the proof. □

Lemma 6.4. Suppose that α, β P Homeo`pS1q act with multi sink-source dynamics, and that
the fixed point sets Fixpαq and Fixpβq are disjoint. Let p P S1, and let I Ă S1 be any open
interval containing fixed points of both α and β. Then p can be sent into I by an element of
xα, βy.

Proof. Let a1 be the first point of Fixpαq encountered upon moving clockwise from p toward I.
If a1 P I, a single element of xαy suffices to move p into I. Otherwise, by applying an element
of xαy and relabeling p, we can ensure p is close enough to a1 so that rp, a1s X Fixpβq “ ∅.
Now let b1 be the first point of Fixpβq encountered upon moving clockwise from a1 toward I.
The same reasoning shows that an element of xβy suffices to either move p into I, or move
p close enough to b1 so that rp, b1s X Fixpαq “ ∅. The fact that I contains fixed points of
α and of β ensures that we do not overshoot I. Since Fixpαq and Fixpβq are finite, finitely
many of these steps suffice to move p into I. □

Note that if φ is R-covered, many intervals in BO do not contain both endpoints of any
leaf of Os or Ou. The next lemma shows that this in fact characterizes R-covered flows.

Corollary 6.5. Suppose that φ is non R-covered, and let I be an interval in BO. Then there
exists a leaf of Os with two ideal endpoints contained in I. The same is true for Ou.

Proof. Let x be a nonsingular, noncorner periodic point, fixed by some g P π1pMq. Propo-
sition 6.3 implies that, up to translating x and conjugating g, we may assume that some
unstable ray r through x has its endpoint in I. Then for any regular stable leaf ℓ crossing r,
the endpoints of gipℓq converge to rp8q P I: otherwise the gipℓq would limit on a periodic leaf
making a perfect fit with r, forcing x to be a corner point by the discussion in Section 6.2. □



15

Figure 6. A stable spike region in λ.

6.5. Rays in leaves and spike regions. For the remainder of Section 6 we fix a particular

leaf λ of rF .
We now recall some more fundamental work of Fenley, beginning with the relation between

rays and geodesic in the leaf λ.

Lemma 6.6 (Rays vs. geodesics, Fenley). Stable and unstable foliation rays in λ enjoy the
following properties:

(i) [Fen09, Lemma 6.4]: There exists δ ą 0 so that for any stable/unstable ray r in λ,
if r˚ denotes its geodesic representative, r˚ Ă Nδprq. Moreover, δ can be chosen
independently of λ.

(ii) [Fen09, Proposition 6.11]: If the leaf space of Os is Hausdorff, then there exists k ą 0,
not depending on λ, such that all leaf slices of λs are uniform k-quasigeodesics. The
same is true for Ou.

In general, leaf slices in λ are not quasi-geodesics—in fact, there can exist leaf slices whose
ideal endpoints are equal. In analyzing this behavior, Fenley discovered formations that he
calls spike regions, defined as follows.

A stable spike region Σ Ă λ is a closed, connected subset of λ satisfying the following.

‚ Σ is bounded by finitely many mutually disjoint stable leaf faces ℓ1, . . . , ℓn, n ě 2,
each of which is regular to the side containing Σ.

‚ Each endpoint of an ℓi in Bλ is an endpoint of one of the other ℓi’s.
‚ Σ contains no singular points in its interior. There is a distinguished point p P Bλ
such that if ℓ is a stable leaf in Σ, then both endpoints of ℓ are equal to p.

An unstable spike region is defined similarly. See Figure 6.
Thus a spike region Σ has finitely many ends, each corresponding to a single ideal point

in Bλ, and all the leaves in intpΣq nest down to a distinguished ideal point.
The following lemma of Fenley ([Fen09, Prop 6.7]) gives a useful characterization of spike

regions and describes the behavior of their ends when projected to M .

Lemma 6.7 (Spike regions, Fenley). Let ℓ be a slice leaf of λs. Suppose that both ends of ℓ
correspond to the same ideal point in Bλ. Then ℓ is contained in the interior of a stable spike
region. Moreover, for each end of the spike region, the image in M of each neighborhood of
the end either is a Reeb annulus in a leaf of F or spirals on such a Reeb annulus.

We will need the following uniform finiteness statement for spike regions.

Lemma 6.8. There are at most finitely many spike regions having a common endpoint σ P Bλ.
Moreover, the bound is independent of λ.
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Proof. Let δ be the constant from Lemma 6.6 and fix c ą 0 to be the minimal width of any
Reeb annulus in any leaf of F (as appearing in Lemma 6.7), which exists by compactness of
M . We will bound the number of spike regions with an ideal point at σ by 2δ

c ` 2.
Suppose Σ1 and Σ2 are spike regions in λ sharing the ideal point σ. Let r1 and r2 be two rays

in the frontiers of Σ1 and Σ2, respectively, such that r1p8q “ r2p8q “ σ. By Lemma 6.6(i),
there exist sequences ppiq and pqiq in r1 and r2 respectively that escape compact sets and
such that dλppi, qiq ă 2δ. In particular, for each i we can find a path αi from pi to qi whose
length in λ is at most 2δ.

Denote the projection of αi to M by αiM . These are paths of length at most 2δ, each
contained in a leaf of F . After passing to a subsequence they converge to a path αM of
length at most 2δ. By covering αM with foliation charts, we can see that αM is contained in
a single leaf λ1

M of F . By Lemma 6.7, the projections to M of neighborhoods of the ends of
Σ1 and Σ2 spiral around Reeb annuli A1 and A2. This implies that all accumulation points
of the projections must lie in the leaves containing A1 and A2, so we conclude that A1 and
A2 both lie in λ1

M . Hence, αM is a path from A1 to A2.
If Σ1 is any spike region between Σ1 and Σ2, meaning that the rays of Σ1 limiting to σ

lie between r1 and r2, then for large i the αi cross the end of Σ1 associated to σ. Hence,
as above, the limiting Reeb annulus associated to the projection of this end of Σ1 to M is
also crossed by αM . Since αM has length at most 2δ, it crosses a Reeb annulus at most 2δ{c
times, where “crosses” refers to passing from one boundary component to the other. This
means that the number of spike regions between Σ1 and Σ2 is at most 2δ{c. Since Σ1 and
Σ2 were arbitrary, we see the number of spike regions having an ideal point at σ is at most
2δ
c ` 2 as desired. □

Finiteness of spike regions implies the following ‘non-collapsing’ lemma.

Lemma 6.9. There exists no open interval in Ωλ X BO that is mapped to a single point by
πλ.

Proof. Suppose to the contrary that such an interval I exists, and let σ be the image of I
under πλ.

If φ is not an R-covered Anosov flow, then repeated applications of Corollary 6.5 produce
arbitrarily many spike regions with an ideal point at σ, contradicting Lemma 6.8.

Otherwise, φ is an R-covered Anosov flow. Note that since M is compact, φ must make
a definite positive angle with F that is bounded below by some constant. This implies that
at each point in λ, the stable and unstable leaves through that point make a positive angle
that is bounded below by some constant. This in turn gives that there exists ε ą 0 such that
for any leaf ℓ of λs, the restriction of λu to Nεpℓq is a standard foliation by intervals.

By Lemma 6.6(ii), the leaves of the foliations λu and λs are uniform quasigeodesics. Hence
there exists K such that any two rays in λ with the same ideal endpoint eventually lie in
each other’s K-neighborhoods.

Fix some n P N, and let ρ1, ρ2, . . . , ρn be disjoint rays in O with pairwise distinct endpoints
in I, so that ρi is stable for i odd and unstable for i even. This choice is possible because φ
is skew Anosov. We let ri be the endpoint of ρi, and label the ρi so that ri`1 P rri, ri`2s for
1 ď i ď n ´ 2. Let ηi be the lift of ρi to λ, so that ηip8q “ σ. By the pigeonhole principle,
some ηi eventually intersects the K

n´1 -neighborhood of ηi`1. In this argument, we are free to

choose n large enough so that K
n´1 ă ε. Since the ηi’s are disjoint, this contradicts that the

foliation of each Nεpηiq by leaves of the other foliation is standard. □
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6.6. Coherence and proximity. Let λ be a leaf of rF . We say that a deck transformation

g of ĂM is ordering with respect to λ if λ separates g´1λ and gλ in ĂM . In this situation, g is
either positive or negative, depending on whether gλ lies to the positive or negative side of

λ, respectively. Let γ be a flowline in ĂM and let stab0pγq denote the finite index subgroup
of its stabilizer that fixes the stable and unstable leaves through γ.

The non-ordering situation can be understood as follows: suppose that gλ ‰ λ and g is not
ordering for λ. If gλ and g´1λ lie above λ, then it follows that for any element giλ P xgy ¨ λ,
all other elements lie above it. If gλ and g´1λ lie below λ, the symmetric statement holds.

We say that γ is coherent with respect to λ if some, and hence every, element g P stab0pγq

is ordering for λ and translates γ in the same direction as it translates λ. If g is chosen to
translate γ in the forward direction, this means that γ is coherent if and only if g is ordering
for λ and gλ lies on the positive side of λ. We use the same terminology for periodic points
in O, according to the properties of their associated orbits.

From our discussion in Section 6.2, the following lemma is immediate:

Lemma 6.10. If one corner of a lozenge is ordering for λ then both are, and one corner is
coherent with respect to λ while the other is not.

If p is in Ωλ and fixed by g, then g is coherent with respect to λ since the corresponding
orbit γp intersects λ. We also have:

Lemma 6.11. If p is a point of fr Ωλ and g P stab0ppq, then either g is ordering with respect
to λ or gλ “ λ.

Proof. Suppose that gλ ‰ λ and g is not ordering with respect to λ. Let γ be the flowline of
rφ projecting to p. Up to replacing g by g´1, we can assume that g translates γ in the forward
direction.

Assume without loss of generality that the component of fr Ωλ containing p is stable. Up
to replacing p by another periodic point in the same component of fr Ωλ, we can assume there
is a half-leaf ℓu of Ou emanating from p into Ωλ.

Let Lu be the half-leaf of ĂW u projecting to ℓu. Let α be a flowline in Lu that passes through
λ, and let a be its projection to O. Then a and ga lie in ℓu, and ga is closer to p than a is.
Since g is not ordering for λ, gα does not intersect λ, so ga R Ωλ, a contradiction. □

If ℓ is a periodic leaf slice in O, then we say that ℓ is coherent with respect to λ when
its periodic points are coherent (there will be more than one only if ℓ contains one or more
blown segments).

Lemma 6.12. Let p P O ´ Ωλ. Let g P stab0ppq and suppose that g is ordering for λ. Let γ

be the flowline lying over p in ĂM , and suppose that a half-leaf H of ĂW u or ĂW s containing γ
intersects λ. Denote the intersection H X λ by ℓ.

(i) If p is coherent for λ, and ℓ is oriented so that its projection Θpℓq is oriented toward
p, then ℓ eventually lies a bounded distance from γ.

(ii) If p is not coherent for λ, and ℓ is oriented so that its projection Θpℓq is oriented
away from p, then ℓ eventually lies a bounded distance from γ.

Proof. In this proof we continue to use a subscript M to denote the projection of an object
to M .

We assume that the orbits in H are asymptotic to γ in the backward direction. Let q be
a point in ℓ “ H X λ. Let σ0 be an embedded path in W upγM q transverse to φ in W upγM q

and connecting qM to γM . Let σ be the lift of σ0 to ĂM that starts at q.
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Figure 7. Possible pictures in the half leaf H from the proof of Lemma 6.12.
Left: the case where γ is coherent with respect to λ. Right: the case where γ
is not coherent with respect to λ.

First suppose that p is coherent with respect to λ. Then gλ lies above λ, and the backward
flowline from gq must intersect λ. This forces ℓ to intersect gσ at a point closer to γ than
gq. See the lefthand side of Figure 7. In M , this forces ℓM “ λM XHM to spiral on a closed
curve parallel to γ. If we orient ℓ compatibly with the direction of this forced spiraling, its
projection to O will be oriented toward p. This completes the proof in this case.

Now suppose that p is not coherent with respect to λ. Then the backward flowline from
g´1q intersects λ, which forces ℓ to intersect g´1σ at a point closer to γ than g´1q. See the
righthand side of Figure 7. InM , this again forces ℓM to spiral on a closed curve. In contrast
with the previous case, the direction of the spiraling is such that if we orient ℓ accordingly,
its projection to O will be oriented away from p.

The case where orbits in H are asymptotic to γ in the forward direction is similar, although

ℓ will eventually fellow travel γ in the opposite direction (in ĂM) in both the coherent and
not coherent cases. □

6.7. Endgame: gaps are spanned by finite chains. The span of a frontier component ℓ
of Ωλ is the component of BO ´ Bℓ not containing any ideal points of Ωλ, where Bℓ is the set
of ℓ’s ideal endpoints.

A frontier chain for the shadow Ωλ of a leaf λ of rF is a sequence ℓ1, ℓ2 . . . , ℓn of components
of frpΩλq such that any two consecutive components share an ideal point. The span of a the
chain tℓ1, . . . , ℓnu is the smallest open interval containing the spans of all ℓi. Alternatively,
this is the interior of the closed interval obtained by taking the union of the closures of each
individual span. The length of a frontier chain is its number of components.

Finally, a frontier chain is a limit chain if there is a sequence of leaves in O intersecting
Ωλ limiting on the entirety of the chain and nothing else. The importance of limit chains lies
in the following observation: if the closure of the span of a limit chain is contained in a gap
of πλ, then leaves in Ωλ limiting to the chain eventually determine leaves in λ with the same
endpoints in Bλ, and hence a spike region in λ by Lemma 6.7.

Lemma 6.13. Any frontier chain has finite length. Moreover, the bound is independent of
λ.

Proof. Consider a hypothetical frontier chain of infinite length.
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Suppose there are infinitely many components of the chain contained in branching leaves
or leaves containing blowup segments. Since they lie in the same chain, all these components
are fixed by some common g P π1pMq, contradicting Lemma 6.1.

Otherwise infinitely many frontier components in the chain are not contained in branching
leaves and do not meet blowup segments. Then each of these components is accumulated upon
by leaves from the Ωλ side, i.e. by leaves that intersect Ωλ. In particular, each component is
itself a limit subchain. This gives rise to infinitely many spike regions in λ sharing an ideal
point, contradicting Lemma 6.8.

Independence of the bound from λ follows from the uniformity statements in Lemma 6.1
and Lemma 6.8. □

The next lemma is our primary tool in the absence of limit subchains:

Lemma 6.14. Consider a frontier chain C of Ωλ.
Suppose that C has no subchain which is a limit chain. Then there exists a foliation ray

r in Ωλ, terminating at a point in C or an ideal point of C, such that its lift rr to λ stays
bounded distance from any orbit corresponding to a periodic point in C.

Proof. Under the hypotheses of the lemma, C must contain branching leaves or meet a blown
segment intersecting Ωλ. Hence all elements in C are fixed by a common g P π1pMq.

By Lemma 6.12 item (i), it suffices to consider the case when all periodic points in C are
incoherent with respect to λ. It follows from Lemma 6.10 that the components of C are
either all stable or all unstable. For concreteness we consider the case when all are stable.

Since no subchains are limit chains, we can find a stable ray r in Ωλ either contained in a
blowup segment and terminating at a periodic point in C, or terminating at an ideal point
of C. Let ℓ be the half leaf of Os containing r. Every periodic point of ℓ is incoherent with
respect to λ (see Lemma 6.10). Hence by Lemma 6.12 item (ii), the lift of r to λ stays a
bounded distance from the flowlines corresponding to periodic points in ℓ.

Since these are connected to the periodic points in C by chains of lozenges, these flowlines
project to orbits in M which are homotopic or antihomotopic. The lemma follows. □

The following is a restatement of Theorem 1.2.

Theorem 6.15. Every gap of πλ is spanned by a finite chain of frontier leaves.

Note that by Lemma 6.13, the length of such a chain is uniformly bounded.

Proof. Suppose by way of contradiction that there is a gap G of πλ that is not spanned by a
finite chain as in the statement. By Lemma 6.9, there are infinitely many maximal frontier
chains with both endpoints in G. Each of these chains either has a subchain which is a limit
chain, or does not.

Suppose there are infinitely many chains with limit subchains. As before, each limit
subchain whose span has closure contained in a single gap gives rise to a spike region of λ.
Hence we can find arbitrarily many spike regions in λ with the same ideal point, contradicting
Lemma 6.8.

Otherwise, there are infinitely many of these frontier chains having no limit chain as a sub-
chain. Note that all these leaves are branching or contain blown segments. By Lemma 6.14,
for each chain we can find a foliation ray in λ (coming from one in Ωλ) staying a bounded
distance from the periodic flowlines corresponding to that chain.

All these rays in λ have the same ideal point because they are associated to chains in our
fixed gap G. By Lemma 6.6, any 2 of these rays have sequences of points escaping to their
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positive ends that stay bounded distance from each other. This means the flowlines have the
same property, up to enlarging the bound. These flowlines are quasigeodesics, because they
are lifts of closed curves. This implies that the projections of these flowlines is a family of
pairwise homotopic or antihomotopic periodic orbits.

We conclude that all the non-limit chains are fixed by a common group element corre-
sponding to the above homotopy class, contradicting Lemma 6.1. □

7. Minimal universal circles

In this section we investigate the minimality of our universal circles.

Given a universal circle, it is possible to obtain a new universal circle by performing a
Denjoy blowup on the orbit of a point; see [Cal06, §5.1]. This operation replaces every point
in the orbit by a closed interval, and the resulting universal circle contains intervals which
are collapsed by every leafwise monotone map. A universal circle pS1

univ, tmλu, ρq is minimal
if no open interval in S1

univ is contained in a gap of each mλ. Calegari showed that every
non-minimal universal circle can be obtained from Denjoy blowups on a minimal universal
circle [Cal06, Lemma 5.1.2].

On the other hand, the word minimal is also applied to group actions. These homonyms
are related in a basic way:

Lemma 7.1. Let C “ pS1
univ, tmλu, ρq be a universal circle for F . If the associated action

π1pMq ↷ S1
univ is minimal, then C is a minimal universal circle.

Proof. Let I Ă S1 be an interval, and let G be a gap of mλ for some leaf λ of rF . Let p be
an endpoint of G. Choose g P π1pMq so that g ¨ p lies interior to I. Note that g ¨ p is the
endpoint of a gap of πg¨λ, so I is not contained in a gap of πg¨λ. □

Hence, the combination of Theorem 5.2, Proposition 6.3, and Lemma 7.1 imply that uni-
versal circles associates to non R-covered flows are minimal.

We say that φ is regulating for F if each flowline of rφ intersects every leaf of rF . Hence φ

is regulating for F exactly when the shadow of any leaf of rF is equal to O. Note that if φ is
regulating for F , then Cφ “ pBO, ρφ, tπλuq is minimal, because no interval of BO is contained
in a gap of any πλ by Lemma 6.9.

In light of this, it only remains to consider the case where φ is skew Anosov and not
regulating for F .

Fix an identification of O with tpx, yq | |y´x| ă 1u so that Os consists of vertical lines and
Ou consists of horizontal lines, let B`O be the “top” of the flow space, i.e. the line y “ x`1,
and let B´O be the line y “ x´ 1.

In [Fen05, Section 7], Fenley shows that this situation is quite rigid. In fact, up to collapsing
any trivial pockets of parallel leaves, F is topologically conjugate to the stable or unstable
foliation of φ. More relevant to our current discussion is that every shadow Ωλ of a leaf λ of
rF is a “triangle”: it has two frontier components, a stable leaf and an unstable leaf making
a perfect fit. Moreover, the ideal points corresponding to these perfect fits either all lie in
B`O or all lie in B´O (see [Fen05, Prop. 7.7]). In particular, either B`O or B´O is collapsed
to a point by each πλ. This gives:

Proposition 7.2. Under the conditions of Theorem 1.1, the universal circle Cφ “ pBO, ρφ, tπλuq

is minimal if and only if the following conditions are not all satisfied:

‚ φ is skew Anosov,
‚ F is R-covered,
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Figure 8. A g-sail of size 4, where the indicated points are fixed by a common
group element g. The black leaf slices are allowed to be stable or unstable.

‚ φ is nonregulating for F .

8. Depth one foliations

In this final section we prove a rigidity result, Theorem 8.5.

8.1. Boundary dynamics of first return maps. Before we begin, we need to rule out
a certain structure in the flow space O. A g-sail of size n is a disk D in O bounded by
rs, ru, ℓ1, . . . , ℓn where:

‚ ru and rs are adjacent stable and unstable leaf rays starting at a point p P O called
the tip of the sail,

‚ ℓ1, . . . , ℓn are leaf slices such that ℓ1 shares an ideal point with rs, ℓn shares an ideal
point with ru, and ri shares an ideal point with each of ri´1 and ri`1 for 1 ă i ă n,
and

‚ all of rs, ru, ℓ1, . . . , ℓn are fixed by g.

See Figure 8.

Lemma 8.1. Let φ be a pseudo-Anosov flow. Then its flow space O has no g-sails.

Proof. We first observe that there can be no g-sail of size 0, because no two half leaves based
at the same point in O terminate at the same point in BO.

Proceeding by induction, suppose there are no g-sails of size less than n, for any g P π1pMq,
and suppose that A is a g-sail of size n bounded by rs, ru, ℓ1, . . . , ℓn. The tip of A must be the
corner point of a lozenge L contained in A. Let q be the other corner point of this lozenge.
Then it is either the case that q lies in ℓ1, ℓn, or intpAq. If q P ℓ1, then A ´ L is a g-sail of
size n´ 1, a contradiction. If q P intpAq, then q is the tip of ě 3 g-sails contained in A (3 if q
is a regular point, more if q is singular). All of these have smaller size than A since the half
leaves from q must end at separate ideal points of A, so this is also a contradiction. □

We will also need the following proposition.

Proposition 8.2. Let φ be an almost pseudo-Anosov flow on M and let F be a foliation
transverse to φ. Let λM be a leaf of F with a well-defined first return map f : λM Ñ λM .

Let λ be the universal cover of λM . Then for any fixed point rp of a lift rf of a power of f
to λ, the half-leaves based at rp determine distinct endpoints on Bλ.

Moreover, the induced action of rf on Bλ has multi sink-source dynamics.

Proof. Fix an identification of λ with a leaf of rF that projects to λM and consider the deck

transformation g such that flowing gλ upward to λ induces rf . Letting p denote the projection
of rp to Ωλ Ă O, we have that gp “ p and g fixes Ωλ.
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Up to replacing g by a finite power, we can assume that g P stab0ppq (recall this means g
fixes the half leaves at p). If the endpoints of these half-leaves are not distinct in Bλ, then
there is an adjacent pair of foliation rays ru and rs at p so that πλprup8qq “ πλprsp8qq. This
implies that these endpoints are contained in a single gap of πλ. By the characterization of
gaps in Theorem 6.15, there is a chain of frontier components ℓ1, . . . , ℓn such that

‚ either ℓ1 crosses rs or has a common endpoint, and
‚ either ℓn crosses ru or has a common endpoint.

Since g fixes Ωλ, it acts on its set of frontier leaves. In particular, it must fix the leaves
ℓ1, . . . , ℓn, since it fixes rup8q and rsp8q. We conclude that if rs crosses ℓ1 then rs X Ωλ is
a blown segment. Otherwise, rs shares an ideal endpoint with ℓ1. The analogous statement
holds for ru and ℓn. Collapsing blown segments produces a g-sail, contradicting Lemma 8.1.

We now prove that rf acts on Bλ with multi sink-source dynamics.

Let η P Bλ be any fixed point of rf . Again applying Theorem 6.15, if the preimage π´1
λ pηq

is not a single point, then it is spanned by a finite chain of frontier leaves. This chain is
fixed by g, so each leaf in the chain is fixed by g also. The endpoints of these leaves in BO
gives a finite set of isolated fixed points of g, each of which is either a source or a sink in
BO by Lemma 6.2. Since the map πλ : BO Ñ Bλ is monotone, to show that η is a source or
sink in Bλ, it suffices to show that the endpoints of the gap π´1

λ pηq are either both sources
or both sinks. But this is clear because the endpoints of any leaf fixed by g whose endpoints
are isolated fixed points are either both sources or both sinks, so the same is true for a finite
chain.

It remains to consider the case where π´1
λ pηq is a single point x P BO, necessarily fixed by

g. Again applying Lemma 6.2, if x is not a limit of points in BO fixed by g, then it is a sink
or a source. As above, we conclude the same for η P Bλ.

It therefore suffices to show that any fixed point of g in BO which is a limit of other fixed
points is contained in an open interval spanned by a frontier component of Ωλ. If x is such
a fixed point, then as in the proof of Lemma 6.2 we see that x is the accumulation point of
a chain of lozenges pLiqiě0 such that p is a corner point of L0 and for large i the lozenges
intersect only in their corners (see Figure 5). In particular for i sufficiently large there is a
leaf slice ℓ containing a side of Li that is disjoint from Ωλ and separates p from x. Since Ωλ
can intersect at most one corner of a given periodic lozenge by Lemma 6.10, we can find a
frontier component of Ωλ separating p from x. We conclude that x is contained the span of
this frontier component. □

8.2. Depth one rigidity. A foliation F ofM is depth one if every noncompact leaf accumu-
lates only on compact leaves. By collapsing pockets of parallel leaves, we can always assume
that a depth one foliation has only finitely many compact leaves. If F0 denotes the union of
the compact leaves, then each component of M ´ F0 will fiber over the circle with fibers the
leaves of F .

Proposition 8.3. Let F be a depth one foliation transverse to almost pseudo-Anosov flows
φ and ψ. If φ has no perfect fits, then neither does ψ.

Proof. Suppose that φ has no perfect fits.
Let N1, . . . , Nk be the components of M cut along F0. Our proof will using some standard

facts about the monodromies of depth one foliations which can be found in [LMT23].

Claim 8.4. Every closed orbit of ψ in Ni is homotopic in Ni to a closed orbit of φ.
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To prove the claim, set N “ Ni, let L be any depth one leaf of N , and fφ{ψ : L Ñ L be
the associated first return map under φ{ψ. Then fφ and fψ are homotopic. The claim is
equivalent to the statement that every periodic point of fψ is Nielsen equivalent to a periodic
point of fφ.

Suppose that rp is a fixed point of some lift of some power of fψ, which we simply denote by
rfψ. Let rfφ be the corresponding lift of the same power of fφ, obtained by lifting a homotopy.

Then the actions of rfφ and rfψ on B rL agree by [CC13, Corollary 4.2].

By Proposition 8.2, rfψ has at least 4 fixed points on B rL and acts with multi sink-source

dynamics, so rfφ does too. According to [LMT23, Theorem 4.1], rfφ must also fix a point rq

in rL. (Technically, the statements there are for return maps to pseudo-Anosov suspension
flows, but the proofs go through without change when the flow has no perfect fits.) This
establishes the required Nielsen equivalence and completes the proof of the claim.

Returning to the proof, suppose for a contradiction that ψ has perfect fits. By results of
Fenley, this is true if and only if ψ has anti-homotopic orbits γ1 and γ2, i.e. periodic orbits
such that γ1 is homotopic to the inverse of γ2 ([Fen16, Theorem B], [Fen99, Theorem 4.8]).
It is clear that neither of these orbits can intersect F0, since each component of F0 is dual
to a cohomology class that is nonnegative on closed orbits. Hence, γ1 Ă Ni and γ2 Ă Nj . (It
is possible that i “ j, but they cannot be anti-homotopic within Ni since each is positively
transverse to an associated depth one leaf Li.)

By the claim, each of these orbits is homotopic to a corresponding orbit of φ by a homotopy
supported in its associated component of M ∖ F0. We conclude that φ must also have anti-
homotopic orbits and thus perfect fits, a contradiction. □

Applying Huang’s result that a depth one foliation admits a unique transverse pseudo-
Anosov flow without perfect fits ([Hua24, Corollary 1.3]), we conclude:

Theorem 8.5. Suppose that the depth one foliation F is transverse to a pseudo-Anosov flow
φ without perfect fits. Then φ is the unique pseudo-Anosov flow transverse to F up to orbit
equivalence.

We expect Theorem 8.5 holds with almost transversality replacing transversality. Since
Proposition 8.3 is proved in that level of generality, it would suffice to generalize the result
of Huang ([Hua24]) to almost pseudo-Anosov flows transverse to depth one foliations.
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