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The Axiom of Choice, Zorn’s Lemma, and all that

When set theory was formalized in the early 1900’s, and a system of axioms set down, it was found (as
for Euclidean geometry centuries earlier!) that one of the axioms proposed was not quite as ‘‘obvious’’ as
the others. This was the axiom that allowed one, in a construction, to simultaneously make an arbitrarily
large set of choices. The formal statement was that given a family (Xi )i!I of nonempty sets, one could
choose a family (xi )i!I with each xi!Xi – in other words, that the product "i!I Xi of a family of
nonempty sets Xi is nonempty!

If the index set I is finite, there is no problem with this: The statement that Xi is nonempty says that
there exists (which is all that is meant by ‘‘one can choose’’) an element xi!Xi ; a finite number of
applications of this observation gives an element (xi )!"i!I Xi . (One can make this argument precise
using induction.) But some mathematicians argued that if I was infinite, we had no way of knowing that
the same was true, so that the general assertion, called the Axiom of Choice, should be rejected. And
indeed, some applications of that Axiom led to conclusions that mathematicians found surprising, and
possibly unreasonable. (For instance, that there exists a set S of real numbers containing exactly one
representative of each coset of the additive subgroup of rational numbers.) We will not go further into the
history here. The Axiom is part of the set-theoretic foundations accepted by most mathematicians today,
‘‘Zermelo-Fraenkel set theory with Choice’’, abbreviated ZFC.

However, certain reformulations are generally more convenient to use than the Axiom in its raw form.
A particularly useful formulation is Zorn’s Lemma, stated as part (ii) of the Theorem on the next page,
which allows one to carry out constructions that may require infinite sequences of choices, each of which
depends on the preceding ones, so that one does not know initially just what choices are to be made and in
what order.

In what follows, I assume you are familiar with the concepts of partially ordered set and totally
ordered set. (Many authors shorten one or the other of these terms to ordered set; e.g., in Appendix 2.1
Lang [2], a partially ordered set is so called.) An element m of a partially ordered set P is called
maximal if no element of P is strictly greater than m. A subset S of a partially ordered set P is called
bounded if there exists t!P such that t is # every element of S. A subset S of a partially ordered
set P is called a chain if it is totally ordered under the induced ordering. An initial segment of a chain S
means a subset T $ S such that if u % are members of S, and !T, then u!T.

A well-ordered set means a totally ordered set in which every nonempty subset has a least element.
You should verify the following observations that we will need:

(1)
If S is a well-ordered subset of a partially ordered set P, and t!/ S is an
upper bound for S in P, then S& {t} is well-ordered.

(2)
If C is a set of well-ordered subsets of a partially ordered set P, such that
for all X, Y!C, either X is an initial segment of Y, or Y is an initial
segment of X, then & C (i.e., &X!C X ) is well-ordered.

In the Theorem below, we assume the axioms of ZFC other than the Axiom of Choice, and sketch a
proof that under these assumptions, four statements, one of which is that Axiom, and another of which is
Zorn’s Lemma, are equivalent. We will not list the other Axioms of ZFC, but simply allow ourselves to
use familiar set-theoretic techniques other than infinite systems of choices. For a brief discussion of these
axioms see [1, §4.4]; for a detailed development, see a text on set theory. In Lang [2] the Axiom of
Choice is assumed without being stated, so that in his Appendix on Set Theory, statements (ii) and (iii)
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below are simply ‘‘proved’’. The development here is shorter than Lang’s, and explicitly shows the
relation with the Axiom of Choice.

To indicate how assertion (ii) below is useful, let me note that in the typical situation where it is to be
applied, P represents a set of ‘‘partially completed’’ constructions, and the relation q # p means ‘‘q is a
partial construction which extends (carries further) the partial construction p’’. For a given application,
one has to set up the P that represents one’s method of construction (sometimes tricky), verify that it
satisfies the hypotheses of Zorn’s Lemma (usually easy), and then show that a maximal element of P
corresponds to the sort of completed construction one wants (frequently a nontrivial argument in the area
of mathematics one is applying the Lemma to). We will see examples of this procedure below in the
proofs of the three other conditions from (ii).

Theorem 1. The following statements are equivalent (assuming Zermelo-Fraenkel Set Theory but not the
Axiom of Choice).
(i) (Axiom of Choice) If (Xi )i!I is a family of nonempty sets, then "I Xi is also nonempty.

(ii) (Zorn’s Lemma) If P is a nonempty partially ordered set with the property that every chain in P
is bounded, then P has a maximal element.

(iii) (Well-Ordering Principle) Every set X can be well-ordered. (I.e., for every X there exists a binary
relation % on X which makes it a well-ordered set.)
(iv) (Comparability of cardinalities, or Bernstein’s Theorem) Given any two sets X and Y, there exists
either a bijection between X and a subset of Y, or a bijection between Y and a subset of X.

Sketch of Proof. We shall first prove (i)'(ii) (which is the hard step, and is the important implication for
our purposes, since it means that assuming ZFC, we can use Zorn’s Lemma), then show that (ii) implies
each of (i), (iii) and (iv), next prove (iii)'(i), and finally, very roughly, indicate how (iv)'(iii) is proved.
If each part of this argument were complete, the arguments showing (ii)'(i) and (ii)'(iii) could be
omitted, and we would have a cyclic proof of equivalence of our four conditions. The present arrangement
allows us to get the equivalence of (i), (ii) and (iii) without needing the details of (iv)'(iii), which we
haven’t time to go into, and also gives three instructive illustrations of how Zorn’s Lemma is used.

(i)'(ii). Let P satisfy the hypothesis of (ii). If S is any chain in P, then by assumption, the set of
upper bounds to S in P is nonempty; from this it is not hard to see that if S does not contain a
maximal element of P, the set of upper bounds to S which do not lie in S is nonempty. Let us call the
latter set B(S). Assuming (i), let us choose a function ( on the set of all chains in P which do not
contain maximal elements of P, associating to each such chain S a member of B(S).

The idea of what we want to do next is to start with any element p!P; if it is not maximal, let p ) =
(({p}) > p; if p ) is not maximal in P let p ) ) = (({p, p )}) > p ); if p ) ) is not maximal, let p ) ) ) =
(({p, p ), p ) )}) > p ) ), and so on. If we do not get a maximal element after finitely many of these steps, we
let p* = (({p, p ) , ... , p(i), ... }); if p* is not maximal in P, we let p* ) denote the result of applying (

to the chain gotten by appending p* to the above chain – ‘‘and so on’’! Intuitively, this process can ‘‘go
on running’’ indefinitely, producing a chain of ever growing cardinality, and would run beyond the
cardinality of P if it never terminated; hence it must eventually terminate, which can only happen if we
hit a maximal element of P. But we do not have at hand the machinery needed to formalize how to ‘‘set
such a construction running’’ (though this is developed in [1]). What we shall use instead is a definition
which characterizes the set of chains that would have been given by the above construction, if we had been
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in a position to formalize it.
Namely, having fixed an element p!P, let C denote the set of subsets S $ P which have the

properties:
(a) S is a well-ordered chain in P.
(b) p is the least element of S.
(c) For every proper nonempty initial segment T $ S, the least element of S – T is ((T).
We see that C is nonempty, because it contains {p}. We claim that if S and S ) are two members

of C, then one of them is an initial segment of the other. Indeed, let R denote the union of all sets that
are initial segments both of S and of S ); thus, R is the greatest common initial segment of S and of
S ). If R were a proper initial segment both of S and of S ), then by (c), ((R) would be the least
element both of S – R and of S ) – R; but this would make R& {((R)} an initial segment both of S
and of S ), contradicting the choice of R. So R cannot be proper in both S and in S ), i.e., it must
equal one of them. That one will thus be an initial segment of the other, as claimed.

Hence if we now denote by U the union of all members of C, then by (2) U is well-ordered.
Clearly, also, all members of C are initial segments of U, and the least element of U is p. We claim
that U also satisfies (c) above. Indeed, if T is a proper nonempty initial segment of U, there exists
some element u!U – T. By construction of U, u belongs to some S!C, and by what we have proved
about C, T must be a proper initial segment of S. Hence (c) says that ((T) is the least element of
S – T, so as S is an initial segment of U, ((T) is also the least element of U –T, as required.

This proves that U is itself a member of C. Now suppose U does not contain a maximal element of
P. Then U& {((U )} will be an element of C (cf. (1) above), which is not a subset of U,
contradicting the definition of U. So U must contain a maximal element of P; so such a maximal
element exists, establishing (ii).

The above argument was intricate; but the elegance of Zorn’s Lemma will be seen in the fact that the
proofs of all three other conditions from that Lemma are quite direct. I leave it to you to verify that in
each case, the partially ordered set described satisfies the hypothesis of Zorn’s Lemma, and that a maximal
element, whose existence is the conclusion of that Lemma, will be an object of the sort we are trying to get
in the case in question. If you have not seen Zorn’s Lemma proofs before, I urge you to think through all
these verifications carefully!

(ii)'(i). Let (Xi )i!I be given as in (i). We let P be the set of ‘‘partial functions’’ on I carrying
each i!I to a member of Xi ; formally, we define this to be the set of all subsets ( $ I × (& I Xi ) such
that for each i!I, any element of ( with first component i has second component in Xi , and for each
i there is at most one such element. We let P be partially ordered by inclusion (i.e., we consider the
partial order relation $ on P). P is nonempty because the empty partial function is a member of it; and
given any chain S in P, one can verify that the union of S (as a family of sets) is an upper bound to S
in P. By Zorn’s Lemma we conclude that P has a maximal element ( under this ordering; we then
verify that such a ( will be a function, i.e., a member of "I Xi , as required.

(ii)'(iv). (We do this next because the method is very similar to the preceding.) Given sets X and
Y, let P be the set of all subsets ( $ X × Y such that for each x!X, ( contains at most one element
with first component x, and for each y!Y, ( contains at most one element with second component y,
and let us order P by inclusion. As above, Zorn’s Lemma gives us a maximal (!P. In this case, we
find that maximality implies that either ( is a one-to-one function from X to Y or the set
(* = {(y, x) (x, y)!(} is a one-to-one function from Y to X; so one of these exists, as desired.
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(ii)'(iii). Given X, we define the set P to consist of all pairs (A, ) such that A is a subset of
X, and is a well-ordering of A. We then partially order P by letting (A, ) % (A ), )) if A $ A ),

is the restriction of ) to A, and A is an initial segment of A ) under ). Given a chain
{(Ai, i ) i!I } in P, one gets an upper bound by taking the union of the Ai , ordered by the union of
the i . The ordering on this union is a well-ordering by (2). (If in defining the order relation (A, ) %
(A ), )) on P, we had left out condition that A be an initial segment of A ), this would not be true!)
By (ii), P has a maximal element. Now let us note that for any element (A, )!P with A a proper
subset of X, we can add one more element of X to A to get a larger set A ), extend to an ordering
) in which this new element is greater than all others, and in view of (1), the result is an element of P

above our given element. Hence for (A, )!P that is maximal, we must have A = X, so is a well-
ordering of the whole set X, as required.

(iii)'(i). Given (Xi )i!I as in (i), let us choose, using (iii), some well-ordering % of the set X =
& I Xi . For each i!I let xi be the least element of the nonempty subset Xi $ X under this well-
ordering. Then (xi )i!I is a member of "I Xi .

(iv)'(iii) requires a bit of machinery that we will not develop here: Given any set X, one can show
that there exists a well-ordered set Y which cannot be put in bijective correspondence with any subset of
X. (One constructs this, loosely, by ‘‘welding together’’ copies of all well-ordered sets whose underlying
sets are subsets of X, so that each is embedded in Y as an initial segment, and then adding one more
element at the top.) But (iv) tells us that either Y can be put in bijective correspondence with a subset of
X, or X with a subset of Y. Hence the latter must hold; and the resulting bijection between X and a
well-ordered set induces a well-ordering on X, as required.

I will assume the equivalent statements (i)-(iv) for the remainder of this course. The one we will use
by far the most often is Zorn’s Lemma.

Let us note that the formulation of Zorn’s Lemma is slightly redundant: the empty set * is a chain in
any partially ordered set P, and an upper bound in P to that chain means an arbitrary element of P.
Hence if every chain, including *, has an upper bound, it is unnecessary to add a separate assumption
that P is nonempty. I have stated Zorn’s Lemma as I did to conform with common usage, but in fact,
you can see that in the proof of (ii)'(i) above, the verification of the nonemptiness of P used precisely
the element that would have been gotten by applying our construction of upper bounds to the empty chain;
and this is also true of the corresponding verifications (not given explicitly) in the proofs of (ii)'(iii) and
(ii)'(iv). In almost every proof using Zorn’s Lemma that I have seen, either the same is true, or the proof
could be made a bit neater by using that approach! Only very rarely does one need different methods to
find upper bounds for nonempty chains and for the empty chain. (However, some authors muddy the
waters by defining a ‘‘chain’’ to be a nonempty totally ordered subset.) In our proof of Zorn’s Lemma
from the Axiom of Choice, it would likewise have been more elegant not to bring in p, but to replace (b)
and (c) by the single condition gotten by removing ‘‘nonempty’’ from (c).
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