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Abstract. In this paper, the explicit form of maximal elements, known as

shorted operators, in a subring of a von Neumann regular ring has been ob-
tained. As an application of the main theorem, the unique shorted operator (of

electrical circuits) which was introduced by Anderson-Trapp has been derived.

1. Introduction

Various partial orders on an abstract ring or on the ring of matrices over the
real and complex numbers have been introduced by several authors either as an
abstract study of questions in algebra, or for the study of problems in engineering
and statistics (See, e.g. [1], [2], [4], [7], [12], and [13]). Also, a partial order on
semigroups is studied by several authors (See, e.g. [6], [15], and [16]). In this
paper we study the well-known minus partial order on a von Neumann regular ring
which is simply a generalization of a partial order on the set of idempotents in
a ring introduced by Kaplansky. For any two elements a, b in a von Neumann
regular ring R, we say a ≤− b (and read it as a is less than or equal to b under the
minus partial order) if there exists an x ∈ R such that ax = bx and xa = xb where
axa = a. Furthermore, we define the partial order ≤⊕ by saying that a ≤⊕ b
if bR = aR ⊕ (b − a)R, and call it the direct sum partial order. The Loewner
partial order on the set of positive semidefinite matrices S is defined by saying that
for a, b ∈ S, a ≤L b if b − a ∈ S. The direct sum partial order is shown to be
equivalent to the minus partial order on a von Neumann regular ring. It is known
that the minus partial order on the subset of positive semidefinite matrices in the
matrix ring over the field of complex numbers implies the Loewner partial order.
The main result of this paper gives an explicit description of maximal elements in
a subring under minus partial order (Theorem 13). As a special case, we obtain a
result similar to the one obtained by Mitra-Puri ([13], Theorem 2.1) for the unique
shorted operator; which, in turn, is equivalent to the formula of Anderson-Trapp
([2], Theorem 1) for computing the shorted operator of a shorted electrical circuit
(Theorem 17).

2. Definitions

Throughout this paper, R is a ring with identity. An element a ∈ R is called von
Neumann regular if axa = a for some x ∈ R and x is called a von Neumann inverse
of a. We will denote an arbitrary von Neumann inverse of a by a(1). An element
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a ∈ R is called weakly regular if xax = x for some x ∈ R and x is called a weak
von Neumann inverse of a. We will denote a weak von Neumann inverse of a by
a(2). If axa = a and xax = x, then x is called a strong von Neumann inverse of a.
We will denote a strong von Neumann inverse of a by a(1,2). A ring R is called von
Neumann regular if every element in R is von Neumann regular. For convenience,
we will use the terminology regular ring in place of von Neumann regular ring. For
details on regular ring, the reader is referred to [5].

Let S be the set of all regular elements in any ring R. For a, b ∈ S we say
that a ≤− b if there exists a von Neumann inverse x of a such that ax = bx and
xa = xb. This is known as the minus partial order as stated above for regular rings.
The minus partial order clearly generalizes the definition of Kaplansky according
to which if e, f are idempotents then e ≤ f if ef = e = fe.

We remark that for the ring of matrices over a field, it is known that a ≤− b if
and only if rank(b− a) = rank(b)− rank(a).

Let T be a ring with involution *. If x is a strong von Neumann inverse of a
such that (ax)∗ = ax, (xa)∗ = xa and ax = xa then x is called the Moore-Penrose
inverse of a and is denoted by a†. Let M be the set of positive semidefinite
matrices. For w ∈ M and b ∈ T , x is called the unique w-weighted Moore-Penrose
inverse of b if x is a strong von Neumann inverse of b and satisfies (wbx)∗ = wbx and
(wxb)∗ = wxb. For details on Moore-Penrose inverse, one may refer to Rao-Mitra
[17] or Ben-Israel and Greville [3].

3. Preliminary Results

The following result of Jain and Prasad ([8], Theorem 1) will prove to be useful
throughout this paper and, specifically, for providing an equivalent definition of the
minus partial order on a regular ring.

Theorem 1. Let R be a ring and let a, b ∈ R such that a+ b is a regular element.
Then the following are equivalent:

(1) aR⊕ bR = (a+ b)R;
(2) Ra⊕Rb = R(a+ b);
(3) aR ∩ bR = (0) = Ra ∩Rb.

From Rao-Mitra ([17], Theorem 2.4.1, page 26), we have the following nice char-
acterization of {a(1)} and {a(1,2)}.

Lemma 2. Let R be a ring and let a ∈ R. If x ∈ {a(1)} then {a(1)} = x + (1 −
xa)R+R(1− ax). In addition, {a(1,2)} = {a(1)aa(1)}.

We now investigate properties of the direct sum partial order and its relation to
the minus partial order.

Let R be a regular ring. Recall a ≤⊕ b if and only if bR = aR ⊕ (b− a)R. By
Theorem 1, this is equivalent to Rb = Ra ⊕ R(b − a). It is straightforward to see
that ≤⊕ is a partial order.

Next we show that the minus partial order is equivalent to the direct sum partial
order on a regular ring. Hartwig-Luh showed that, when R is a regular ring, (2) is
equivalent to (3) with the additional hypothesis that a ∈ bRb (see [14], page 5).

Lemma 3. Let R be a regular ring and a, b ∈ R. Then the following are equivalent:
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(1) a ≤⊕ b;
(2) a ≤− b;
(3) {b(1)} ⊆ {a(1)}.

Proof. (1) =⇒ (2) : As a ≤⊕ b, bR = aR ⊕ (b − a)R. It follows that aR ⊆ bR.
Hence, a ∈ bR and thus a = bx for some x ∈ R. As R is a regular ring, for
any g ∈ {b(1)}, bgb = b. Thus bga = bg(bx) = (bgb)x = bx = a. Now aga =
bga− (b−a)ga = a− (b−a)ga. Thus a−aga = (b−a)ga. But aR∩ (b−a)R = (0)
and a− aga = (b− a)ga ∈ aR ∩ (b− a)R. Hence a− aga = 0 and (b− a)ga = 0.
Therefore aga = a = bga and hence {b(1)} ⊆ {a(1)}. Indeed, this demonstrates
that (1) =⇒ (3). Now choose x = gag. Then axa = a(gag)a = aga = a and
x ∈ {a(1)}. Now bx = (bga)g = ag as bga = a. Furthermore, ax = agag = ag as
aga = a. Thus ax = bx. Now bg(b−a) = bgb− bga = (b−a) and (b−a)g(b−a) =
bg(b−a)−ag(b−a) = (b−a)−ag(b−a). Hence ag(b−a) = (b−a)−(b−a)g(b−a) ∈
aR ∩ (b− a)R = (0). Thus (b− a) = (b− a)g(b− a) and ag(b− a) = 0. It follows
that agb = aga = a. Now xb = (gag)b = g(agb) = ga and xa = gaga = ga.
Therefore xb = xa. Thus ax = bx and xa = xb for some x ∈ {a(1)} and it follows
that a ≤− b.

(2) =⇒ (3) : This is well-known. We prove it here for completeness. As a ≤− b,
there exists some x ∈ {a(1)} such that ax = bx and xa = xb. It follows that
a = axa = bxa = axb and for any y ∈ {b(1)}, aya = (axb)y(bxa) = ax(byb)xa =
axbxa = (axb)xa = axa = a. Thus {b(1)} ⊆ {a(1)}.

(3) =⇒ (1) : Given that {b(1)} ⊆ {a(1)}, ab(1)a = a for any b(1) ∈ {b(1)}. By
Lemma 2, {b(1)} = g + (1 − gb)R + R(1 − bg) for g ∈ {b(1)}. For each x ∈ {b(1)}
there exists some r1, r2 ∈ R such that x = g+ (1− gb)r1 + r2(1− bg). Multiplying
on the left and right by a yields axa = a [g + (1− gb)r1 + r2(1− bg)] a. Hence
a = axa = a [g + (1− gb)r1 + r2(1− bg)] a = aga + a(1 − gb)r1a + ar2(1 − bg)a =
a + a(1 − gb)r1a + ar2(1 − bg)a. Thus a(1 − gb)r1a + ar2(1 − bg)a = 0. As
a(1− gb)r1a+ ar2(1− bg)a = 0 holds for all r1 and r2, we can take, in particular,
r2 = 0 which gives a(1 − gb)r1a = 0 for all r1 and hence a(1 − gb)Ra = (0).
Similarly, by taking r1 = 0, we conclude aR(1− bg)a = (0). Now (a(1− gb)R)2 =
(a(1− gb)R) (a(1− gb)R) = (a(1− gb)Ra) ((1− gb)R) = (0) ((1− gb)R) = (0).
Similarly (R(1− bg)a)2 = (0). Since R is a regular ring, it has no nonzero nilpotent
left or right ideal. Thus, a(1 − gb)R = (0) and R(1 − bg)a = (0). As 1 ∈ R,
a(1 − gb) = 0 and (1 − bg)a = 0. Therefore, bga = a = agb. Now for any
t1, t2 ∈ R, at1 = (bga)t1 = b(gat1) ∈ bR and (b− a)t2 = bt2− at2 = bt2− (bga) t2 =
b(t2−gat2) ∈ bR. Hence, aR+(b−a)R ⊆ bR . Thus aR+(b−a)R = bR. Now we
want to show that aR∩(b−a)R = (0). For some u, v ∈ R, suppose au = (b−a)v ∈
aR ∩ (b − a)R. Then au = agau = ag(b − a)v = agbv − agav = av − av = 0 as
a = agb. Thus aR∩ (b− a)R = (0) and so bR = aR⊕ (b− a)R. Hence, a ≤⊕ b as
required. �

We also note that proving directly (2) =⇒ (1) requires a brief argument.

The Corollary that follows shows, in particular, that the minus partial order de-
fined on the set of idempotents is the same as the partial order defined by Kaplansky
on idempotents (See e.g. Lam [9], page 323).
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Corollary 4. Let R be a regular ring and a, b ∈ R such that b = b2. Then the
following are equivalent:

(1) a ≤− b;
(2) a = a2 = ab = ba.

Proof. The proof is straightforward. �

Corollary 5. Let R be a regular ring and let a, b, c ∈ R with b = a+ c. Then the
following statements are equivalent:

(1) a ≤− b;
(2) aR ∩ cR = (0) = Ra ∩Rc.

Proof. It follows from Lemma 3 and observing that, in a regular ring, a ≤− a + c
if and only if a ≤⊕ a+ c if and only if (a+ c)R = aR⊕ cR. �

Hartwig ([6], Pages 12-13) posed the following questions, among others:

(1) If R is a regular ring and aR ∩ cR = (0) = Ra ∩ Rc, does there exist a(1)

such that a(1)c = 0 = ca(1)?

(2) Does a ≤− c, b ≤− c, aR ∩ cR = (0) = Ra ∩Rc imply a+ b ≤− c?

As a byproduct of the development of the direct sum partial order, we give
an application that answers the above two questions of Hartwig. We do not know
whether or not someone has answered these questions, as we could not find this
in the literature. In any case, we believe that the answers we have given would
be of interest to the reader. Below, we answer Question 1 in the affirmative and
Question 2 in the negative by providing a counterexample.

Proposition 6. (Hartwig Question 1) If R is a regular ring and aR ∩ cR = (0) =
Ra∩Rc, for some nonzero elements a, c ∈ R, then there exists a nonzero a(1) such
that a(1)c = 0 = ca(1).

Proof. Let b = a + c. By Corollary 5, a ≤− b. Then, by the definition of the
minus partial order, for some a(1), aa(1) = ba(1) and a(1)a = a(1)b. Now substituting
b = a+c yields aa(1) = (a+c)a(1) and a(1)a = a(1)(a+c). Thus aa(1) = aa(1)+ca(1)

and a(1)a = a(1)a+ a(1)c. It follows that ca(1) = 0 = a(1)c as required. �

Example 7. (Hartwig Question 2)
Using matrix units eij, let a = e13, b = e24, and c = e13 + e14 + e24. Clearly

a ≤− c and b ≤− c. It is obvious that aR ∩ bR = (0) = Ra ∩Rb. Since rank(c)−
rank(a+ b) = 2− 2 = 0 and rank(c− (a+ b)) = 1, it follows that a+ b �− c.
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4. Main Results

Let R be a regular ring and S be a subset of R. We define a maximal element
in C = {x ∈ S : x ≤⊕ a} as an element b 6= a such that b ≤⊕ a and if b ≤⊕ c ≤⊕ a
then c = b or c = a.

For fixed elements a, b, c ∈ R, we give a complete description of the maximal
elements in the subring S = eRf , where e and f are idempotents given by eR =
aR ∩ cR and Rf = Ra ∩ Rb. Here, C = {s ∈ eRf : s ≤⊕ a}. In the literature,
maximal elements in C have been called shorted operators of a ([1], [2] and [13]).

We begin with a result that is used frequently in the sequel. This is indeed con-
tained in ([15], Lemma 1) where the author proves the equivalence of 11 statements.
However, for the sake of completeness, we provide a direct argument.

Lemma 8. Suppose R is a regular ring and a, b ∈ R such that {a(1)} ∩ {b(1)} 6= ∅.
Then the following are equivalent:

(1) aR ⊂ bR and Ra ⊂ Rb;
(2) a ≤⊕ b.

Proof. Suppose aR ⊂ bR and Ra ⊂ Rb. It follows that a = rb = bs for some r, s ∈
R. We claim that ab(1)a is invariant under any choice of b(1). Let x, y ∈ {b(1)}
be arbitrary. Now axa = (rb)x(bs) = r(bxb)s = rbs as bxb = b. Similarly, aya =
(rb)y(bs) = r(byb)s = rbs as byb = b. Thus axa = aya for every x, y ∈ {b(1)}.
Hence ab(1)a is invariant under any choice of b(1). Since we have assumed that
{a(1)}∩{b(1)} 6= ∅, there exists some g ∈ {a(1)}∩{b(1)}. Therefore ab(1)a = aga = a
for all b(1). Hence {b(1)} ⊆ {a(1)} and by Lemma 3, a ≤⊕ b.

Conversely, if a ≤⊕ b, then aR ⊂ bR and Ra ⊂ Rb follow by definition. �

We now demonstrate an important relationship between weak von Neumann
inverses and strong von Neumann inverses under the direct sum partial order.

Lemma 9. Let a ∈ R where R is a regular ring. Then the following are equivalent:
(1) b is a weak von Neumann inverse of a;
(2) There exists a strong von Neumann inverse c of a such that b ≤⊕ c.

Proof. Suppose b is a weak von Neumann inverse of a. For any fixed a(1), define
u = a(1)(a− aba)a(1) and c = b+ u. Then aca = aba+ aua = aba+ aa(1)aa(1)a−
aa(1)abaa(1)a = aba+a−aba = a and cac = (b+u)a(b+u) = bab+bau+uab+uau =
b+ ba(a(1)aa(1) − a(1)abaa(1)) + (a(1)aa(1) − a(1)abaa(1))ab+

(a(1)aa(1)− a(1)abaa(1))a(a(1)aa(1)− a(1)abaa(1)) = b+ baa(1)− baa(1) + a(1)ab−
a(1)ab+ a(1)aa(1)− a(1)abaa(1)− a(1)abaa(1) + a(1)abaa(1) = b+ a(1)(a− aba)a(1) =
b+ u = c. This shows that c is a strong von Neumann inverse of a.

Now we want to show that b ≤⊕ c. In other words, we will prove that bR⊕uR =
cR. Observe that cab = [b+ a(1)(a− aba)a(1)]ab = bab+ a(1)(ab− abab) = bab = b.
Therefore b ∈ cR. As c = b + u, it is clear that cR ⊆ bR + uR. As u = c − b
and b ∈ cR, uR ⊆ cR. It follows that cR = bR+ uR. Now we want to show that
bR ∩ uR = (0). Let bp = uq ∈ bR ∩ uR for some p, q ∈ R. Multiplying ba on
both sides yields bp = babp = bauq = ba[a(1)(a − aba)a(1)]q = (ba − baba)a(1)q =
(ba − ba)a(1)q = 0. Therefore bR ∩ uR = 0. Thus bR ⊕ uR = cR and we have
demonstrated that b ≤⊕ c.

Conversely, suppose that there exists a strong von Neumann inverse c of a such
that b ≤⊕ c. As c is a weak von Neumann inverse of a, cac = c and thus a ∈ {c(1)}.
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By assumption b ≤⊕ c and it follows from Lemma 3 that {c(1)} ⊆ {b(1)}. Thus
a ∈ {c(1)} ⊆ {b(1)} and it follows that bab = b. Hence b is a weak von Neumann
inverse of a. �

Lemma 10. Suppose R is a regular ring. Let y be a weak von Neumann inverse
and z be a strong von Neumann inverse of an element α in the subring fRe such
that y ≤⊕ z. Then eyf ≤⊕ ezf .

Proof. Let α = fxe ∈ fRe. Since y ≤⊕ z, yR ⊆ zR and Ry ⊆ Rz. Thus,
y = rz = zs for some r, s ∈ R. It is straightforward to verify that zαy = y = yαz.
This gives (ezf)x(eyf) = (ezf)x(e(zs)f) = ez(fxe)zsf = ezsf = eyf . Similarly
(eyf)x(ezf) = eyf . Thus (eyf)R ⊆ (ezf)R and R(eyf) ⊆ R(ezf). As α = fxe
is a common von Neumann inverse of y and z, it follows that (eyf)x(eyf) = eyf
and (ezf)x(ezf) = ezf and so x is a common von Neumann inverse of eyf and
ezf . By Lemma 8, eyf ≤⊕ ezf . �

Next, we give two key lemmas.

Lemma 11. Let R be a regular ring. Then d ∈ C is a maximal element in C if
and only if for any d

′ ≤⊕ a such that dR ⊆ d
′
R ⊆ eR, Rd ⊆ Rd

′ ⊆ Rf , we have
d = d

′
.

Proof. Let d be a maximal element in C. If d
′

is any element in R such that
d
′ ≤⊕ a and dR ⊆ d′R ⊆ eR, Rd ⊆ Rd′ ⊆ Rf , then clearly d

′ ∈ eRf . As d
′ ≤⊕ a,

d
′ ∈ C. Then {a(1)} ⊆ {d(1)} ∩ {(d′)(1)}. Hence, d ≤⊕ d′ by Lemma 8. Then by

the maximality of d in C, d = d
′
.

The converse is obvious. �

Lemma 12. C = {euf : u is a weak von Neumann inverse of fa(1)e}.

Proof. Let s = etf ∈ C for some t ∈ R. Then s ≤⊕ a. By Lemma 3, {a(1)} ⊆
{s(1)}. Therefore, we have (etf)a(1)(etf) = (etf). In other words, (etf)(fa(1)e)(etf) =
(etf), proving that s = etf is a weak von Neumann inverse of fa(1)e. This shows
that s = euf for some weak von Neumann inverse u of fa(1)e.

Conversely, consider any u ∈ (fa(1)e)(2) and let x = euf . We want to show
that x ≤⊕ a. Now xa(1)x = (euf) a(1) (euf) = eu

(
fa(1)e

)
uf = euf = x as

u ∈ (fa(1)e)(2). Hence {a(1)} ⊆ {x(1)}. By Lemma 3, x ≤⊕ a and so x = euf ∈ C.
�

Theorem 13. If maxC is non-empty then, maxC = {evf : v is a strong von
Neumann inverse of fa(1)e}.

Proof. If a ∈ S then clearly maxC is empty. So, assume that a /∈ S.
Suppose x = euf ∈ C where u =

(
fa(1)e

)(2)
. By Lemma 9, there is a strong von

Neumann inverse v ∈ eRf of fa(1)e such that euf ≤⊕ evf . Note that evf ≤⊕ a.
Thus maxC ⊆ {evf : v is a strong von Neumann inverse of fa(1)e}.

Now suppose evf, ev′f ∈ C such that v, v′ are strong von Neumann inverses of
fa(1)e and evf ≤⊕ ev′f . Therefore ev′fR = evfR ⊕ (ev′f − evf)R. Now we
want to show that ev′fR = evfR. As evf, ev′f ∈ C, evf ≤⊕ a and ev′f ≤⊕ a.
Thus {a(1)} ⊆ {(evf)(1)} and {a(1)} ⊆ {(ev′f)(1)}. So let a(1) be a common von
Neumann inverse of evf and ev′f . By assumption evfR ⊆ ev′fR. As shown in
Lemma 10, (ev′f) a(1) (evf) = evf and (ev′f) a(1) (ev′f) = (ev′f). Now (ev′f)R =
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ev′fa(1)R = ev′fa(1)eR = ev′(fa(1)evfa(1)e)R ⊆ ev′fa(1)evfR = evfR ⊆ ev′fR.
Thus ev′fR = evfR. Similarly we can show that Rev′f = Revf .

As Rev′f = Revf , we claim that ev′f = evf . Let ev′f = revf for some r ∈ R.
Now evf = ev′fa(1)evf = (revf)a(1)evf = r(evf) = ev′f . Thus evf = ev′f .
Hence maxC = {evf : v is a strong von Neumann inverse of fa(1)e}. �

We now provide an example to illustrate the previous theorem.

Example 14. Note that we are choosing f to be of rank two. So any max-

imal element will have, at most, rank two. Choose e =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

 and

f =


1
2

1
4 0 0

1 1
2 0 0

0 0 0 0
0 0 0 1

. Suppose a =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. Then one choice for a(1)

is a(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and fa(1)e =


1
2

1
8

1
8 0

1 1
4

1
4 0

0 0 0 0
0 0 0 1

. For our choice of a

strong von Neumann inverse of fa(1)e, we first choose its Moore-Penrose inverse
and later its group inverse, as both are also strong von Neumann inverses. Let

v1 be the Moore-Penrose inverse of fa(1)e. Then v1 =


16
45

32
45 0 0

4
45

8
45 0 0

4
45

8
45 0 0

0 0 0 1

 and

ev1f =


8
9

4
9 0 0

2
9

1
9 0 0

2
9

1
9 0 0

0 0 0 1

. Now ev1f ≤− a because rank(a − ev1f) = 2 = 4 − 2 =

rank (a)− rank(ev1f). Thus ev1f ∈maxC.

We now find another element of maxC. The group-inverse v2 of fa(1)e is

v2 =


8
9

2
9

2
9 0

16
9

4
9

4
9 0

0 0 0 0
0 0 0 1

. Then ev2f =


2
3

1
3 0 0

2
3

1
3 0 0

2
3

1
3 0 0

0 0 0 1

. Now ev2f ≤− a because

rank(a− ev2f) = 2 = 4− 2 = rank (a)− rank(ev2f). Thus ev2f ∈maxC.

5. An Application

In this section, as an application of our main theorem on maximal elements, we
derive the unique shorted operator aS of Anderson-Trapp (See [2], Theorem 1) that
was also studied by Mitra-Puri (See [13], Theorem 2.1). We believe that there will
be other such applications.

Throughout this section R will denote the ring of n × n matrices over the field
of complex numbers, C. For any matrix or vector u, u∗ will denote the conju-
gate transpose of u. In this section S will denote the set of positive semidefinite
matrices.
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Recall, the Loewner order, ≤L, on the set S of positive semidefinite matrices in
R is defined as follows: for a, b ∈ S, a ≤L b if b− a ∈ S.

Suppose a ∈ S and c ∈ R. As in the previous section, eR = aR ∩ cR, e = e2,
and choose f = e∗. Clearly, f ∈ Ra because a is hermitian. Let CL = {s ∈
eRf ∩ S : s ≤L a} = {s ∈ eSf : s ≤L a}.

Under this terminology, the set C in the previous section will become, C = {s ∈
eSf : s ≤⊕ a}.

If a ∈ eSf then clearly maxC is empty. So, if maxC is non-empty then a /∈ eSf ,
equivalently, rank(e) 6= rank(a), as shown in the remark below.

Remark 15. rank(e) = rank(a) if and only if a ∈ eSf.

Proof. Suppose rank(e) = rank(a). So eR = aR as eR ⊆ aR. Then a = ex for
some x ∈ R and by taking conjugates, a = x∗e∗, i.e., a ∈ Re∗. Hence, a ∈ eRe∗.
As a ∈ S, a ∈ S ∩ eRe∗ = eSe∗. For if exe∗ ∈ S then exe∗ = e (exe∗) e∗ ∈ eSe∗
and so S ∩ eRe∗ ⊆ eSe∗. The reverse inclusion is obvious.

Conversely, suppose a ∈ eSf . As eR = aR ∩ cR, we have e = ax and so
rank(e) ≤ rank(a). As a ∈ eSf , a = ese∗ for some s ∈ S. Therefore rank(a) ≤
rank(e). Hence, rank(e) = rank(a). �

The following lemma is folklore.

Lemma 16. Suppose a, b ∈ S. If a ≤⊕ b then a ≤L b.

Proof. Suppose a ≤⊕ b. Equivalently, (b− a) ≤⊕ b and by Lemma 3 we know that
{b(1)} ⊆ {(b− a)(1)}. Thus, b† is a von Neumann inverse of (b− a). From
[11], as b is positive semidefinite, b† is positive semidefinite. Thus b − a =
(b− a) b† (b− a) ≥L 0. Hence (b− a) ∈ S and a ≤L b. �

Theorem 17. Let a ∈ S and let f†a be the a-weighted Moore-Penrose inverse of
f . If maxC is non-empty, then maxC = maxCL = {af†af}.

Proof. By Theorem 13, if maxC is non-empty then maxC = {evf : v is a strong
von Neumann inverse of fa(1)e}. By assumption, e ∈ aR and so e = ax for some
x ∈ R. By taking conjugates, e∗ = x∗a as a ∈ S. In addition, as f ∈ Ra, f = ya
for some y ∈ R. This yields that fa(1)e = yaa(1)ax = yax and thus fa(1)e is
independent of the choice of a(1). We may then choose the Moore-Penrose inverse
a† for a(1). Next, we want to show that a strong von Neumann inverse of fa†e
is also unique. Note that fa†e = e∗a†e is positive semidefinite, as the Moore-
Penrose inverse of a positive semidefinite element is positive semidefinite [11]. As
a ∈ S, we can write a = zz∗ for some z ∈ R. Now fR = yaR = yaa†aR =
fa†aR = fa†R = fzz∗R = fzR = (fz) (fz)∗R = fzz∗f∗R = fa†eR. Similarly
Re = Rfa†e. It follows that f = fa†ep and e = qfa†e for some p, q ∈ R. Consider
an element evf ∈ maxC. Then evf = qfa†evfa†ep = qfa†ep, showing that evf is
independent of the choice of strong von Neumann inverse v of fa†e. Thus maxC
is a singleton set consisting of the element e

(
fa†e

)†
f . Since a ∈ S, a† ∈ S and

hence e
(
e∗a†e

)†
f = e

(
fa†e

)†
f ∈ S.

Next, we proceed to show that maxC = {af†af} also. Recall that af†af is
hermitian and so af†af =

(
af†af

)∗ = f∗
(
f†a
)∗
a∗ =

(
f†af

)∗
a. Since f†af is an

idempotent, we get af†af = a(f†af)(f†af) =
(
f†af

)∗
a(f†af) and thus af†af ∈ S.
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We now prove that af†af ≤⊕ a. Let a(1) be an arbitrary von Neumann inverse
of a. Then

(
af†af

)
a(1)

(
af†af

)
= (af†a)(ya)a(1)

(
af†af

)
= (af†ay)aa(1)a(f†af) =

af†ayaf
†
af = af†aff

†
af = af†af . Hence {a(1)} ⊆ {

(
af†af

)(1)}. Consequently, by
Lemma 3, af†af ≤⊕ a which gives af†af ∈ C.

Furthermore, by Lemma 16, af†af ≤⊕ a gives af†af ≤L a and hence af†af ∈ CL.
Finally, we show that for every d ∈ CL, d ≤L af†af . As d ∈ S ⊆ Rf , write d = uf

for some u ∈ R. Then df†af = uff†af = uf = d = (f†af)∗d
(
f†af

)
as d is hermitian.

Now consider af†af − d =
(
f†af

)∗
a
(
f†af

)
−
(
f†af

)∗
d
(
f†af

)
=
(
f†af

)∗ (a− d)
(
f†af

)
,

which is positive semidefinite and thus af†af − d ∈ S. Hence d ≤L af†af .
Thus af†af is the unique maximal element in CL provided af†af 6= a. We have

shown above that af†af ∈ CL and thus af†af ∈ eSf . But by assumption a /∈ eSf .
So af†af 6= a. Therefore, af†af is unique maximal element in CL and it also belongs
to C as we have already proven that af†af ≤⊕ a.

Now, because e
(
fa†e

)†
f is the unique maximal element in C and af†af ∈ C,

af†af ≤⊕ e
(
fa†e

)†
f . By Lemma 16, af†af ≤L e

(
fa†e

)†
f as e

(
fa†e

)†
f ∈ CL.

We have shown above that for every element d ∈ CL, d ≤L af†af and thus af†af =
e
(
fa†e

)†
f . Hence, maxC = maxCL = {af†af} as desired. �

The following examples demonstrate the result proved in the previous theorem,
i.e. af†af = e

(
fa†e

)†
f and so maxC = maxCL = {af†af}. Furthermore, maxC

agrees with the formula given by Anderson-Trapp for computing the shorted oper-
ator aS when we are given the impedance matrix a.

The Anderson-Trapp formula states that if a is the n×n impedance matrix then
the shorted operator of a with respect to the k-dimensional subspace S (shorting

n − k ports) is given by aS =
[
a11 − a12a

†
22a21 0

0 0

]
, where a is partitioned as

a =
[
a11 a12

a21 a22

]
such that a11 is a k × k matrix. We show that the maximum

element af†af obtained by us is permutation equivalent to aS , i.e. PTaf†af P = aS

for some permutation matrix P.

Example 18. Let e =


1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 1

 and then f = e∗ =


1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 1

. Suppose

a =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

. Then one may check that f†a = f =


1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 1

.

So af†af =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

. We now show that af†af = e
(
fa†e

)†
f. Now, a† =
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1
4 0 1

4 0
0 1 0 0
1
4 0 1

4 0
0 0 0 1

 and
(
fa†e

)† =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

. Thus e
(
fa†e

)†
f =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

.

Hence e
(
fa†e

)†
f =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1

 = af†af as proved in the theorem. We may

verify that af†af ≤⊕ a. This follows from rank(a) − rank(af†af) = 3 − 2 = 1 =
rank(a− af†af). We know then af†af ≤L a. Thus maxC = maxCL = {af†af}.

We now compute the shorted operator as given by Anderson-Trapp. We partition

a as follows: a =


1 0 1

0 1 0
1 0 1

 0
0
0

[
0 0 0

] [
1
]
.

Then aS =


1 0 1

0 1 0
1 0 1

−
0

0
0

 [1]† [0 0 0
]

0

0 0

 =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0

. Now for

P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, Paf†afP
T = aS.
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