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Abstract

Let p1, p2,..., pn be a sequence of n pairwise coprime positive integers,
and let P = pipa...pn. Let 0,1,...,m — 1 be a sequence of m different
colors. Let A be an n x mP matrix of colors in which row 4 consists of
blocks of p; consecutive entries of the same color, with colors 0 through
m — 1 repeated cyclically. The Monochromatic Column problem is to
determine the number of columns of A in which every entry is the same
color. The solution for m = 3 colors is presented and proved.
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1 Introduction

Motivated by a question raised in [1] regarding finding an alignment with op-
timal score according to a given scoring scheme for given n sequences of char-
acters from a fixed alphabet, Nagpaul and Jain in [2], introduce the following
Monochromatic Column problem. Let pi, pa,..., py, be a sequence of n pairwise
coprime positive integers, and let P = pyps...p,,. Let 0,1,...,m—1 be a sequence
of m colors. Let A be an n x mP matrix of colors in which row ¢ consists of
blocks of p; consecutive entries of the same color, with colors 0 through m — 1
repeated cyclically (see Section 2 for the precise definition). The Monochro-
matic Column problem is to count the number of columns of A in which every
entry in the column is the same color.

In [2], Nagpaul and Jain solve the Monochromatic Column problem for the
case of m = 2 colors. In the case of m > 2 colors, they solve the problem
under the constraints that all rows begin with the same color and that, for
1 <y < 79 < n, the integers p;, and p;, are congruent to each other modulo



m. Here the Monochromatic Column problem for m = 3 colors, which are
necessarily 0, 1, and 2, is solved.

To illustrate, let n = 2, p; = 2, and po = 3. Then P = 6 and any matrix
will be 2 x 18. One such matrix is the following:

A 00112200112 2200112 2

11122 2000111222200 0)

For this A, the number of monochromatic columns is 6. Note that the first
row starts with a block of color 0, while the second row starts with a block of
color 1. Since there are 3 choices of starting color for each row, there are 32 = 9
matrices possible.

Here, the Monochromatic Column problem for m = 3 without constraints is
solved (Section 3). Section 4 counts the monochromatic column blocks, where
consecutive monochromatic columns of the same color form monochromatic
blocks. In Section 5, we discuss the monochromatic column problem for ar-
bitrary number of colors under certain special cases. Section 2 lays out the
terminology and notation.

2 Terminology and Notation

Let m be a positive integer. The colors for m are the integers 0,1,...,m — 1.
An r x s color matrix is an 7 X s matrix A = (a,;) in which every entry is one
of the m colors. Column j of A is a monochromatic column if a;,; = a;,; , for
all i1 and iy satisfying 1 < i1 < ip < r. For a positive integer ¢, row i of A is
g-blocked with initial color p if ¢g|s and, for 1 < j < s, the 4, entry is the color

j— 1

A is the (q1,q2, -, qn; P15 P2, - - -, pn) color matriz of width s if, for every i sat-
isfying 1 <4 < n, we have ¢;|s and row i of A is g;-blocked with initial color
pi. The sequence p1,po, ..., pn of positive integers is coprime if p;; and p;, are
coprime, for all 7; and 79 satisfying 1 < i3 < 72 < n. Let P = pipa---pp.
Note that the permutation of rows will not affect the number of monochro-
matic columns. The notation (m;p1,pa,...,Pn;C1,C2, - .y Crit1, .y trog) will
mean that rows tx_1 + 1 to tx start with color ¢x for 1 < k < r defining tg = 0
and t, = n. The Monochromatic Column problem is to determine the count
N(m;p1,p2,---,Pn;C1,C2, -« ., Crit1, ooy troq) of monochromatic columns in the
(M;p1,D2, -« s Pn; C1,C2, -+« Cri b1y ooy tro1) color matrix A of width mP. Given
a color matrix A of width mP, from here out just referred to as a canonical
color matrix, N(A) will be the number of monochromatic columns in A.
Fori=1,2,....,nand j =1,2,....,mP, define

j—lJ
b =
! {pi

kij = — bijpi.

and



Then, 1 < k;; < p;, and the color in entry i, j is
Q5 = (b” + pz) mod m

where p; is the initial color of row i.

Define a column j to be an h-bichromatic column if for fixed h, a;; = ¢, for
1<i<handaj;=¢for h+1<i<n, for fixed c,,c; € {0,1,...,m — 1}.
In the case ¢, = ¢, the column j becomes a monochromatic column. Define
a set of consecutive monochromatic columns {j,...,5 + ¢t} for some ¢ to be a
monochromatic block if a1; = ayy, for all k satisfying j <k < j+tand if j # 1,
column j — 1 is not monochromatic and if j + ¢ # n, column j + ¢ + 1 is not
monochromatic.

3 Counting Monochromatic Columns in 3 Colors

To solve the Monochromatic Column problem for m = 3, we consider three
cases. The first case requires that the p; are pairwise congruent modulo 3.

Lemma 1 Assume p1,...,pn are coprime, p; = s(mod3) for 1 < i < n and
fized s € {1,2} and to,t1,ta,ts satisfy 0 =tg < t1 <ty <t3. Then

2 2 topn
i — S
N(3;plap25"'apn;oalaZ;tlatQ):321_[ H (p 3 +Gﬁ,p,s>

B=0 p=0i=t,+1

where Gg. .y = {S*((Wrﬂ;) mod 3)J 4 L(([HPS) ;nod 3)+2J_

Proof. Let P = pipa---pn. Let A be the (3;p1,pa,...,0n; 0,1, 2;t1,t2)
canonical color matrix. Denote the initial color of row ¢ by p;. By definition,

j—1
a5 = (Vp_ J—i—pi) mod 3.

Let 41 and ig satisfy 1 < iy < iy < n. Observe that, for all j € {1,2,..., P}, we
have

o : _ _ i1 _ Ptj—1 _
(Qll,J - CL“,PJrJ) mod3 = Piy + pi, — TJ - pll) mod 3
= (| -L - ]Z2) mod 3
Diy Diy Diy
= (|Z2) =2 —]22]) mod 3
Dig Dig Dig
= —1 Ptj—1
= = +pi2—t o J—pQ) mod 3
ia ia

= (@i, = iy, py;j) mod 3
since £ = £(mod 3). Similarly,
Pi Pj

(ailyj — CLl'hQPJrj) mod 3 = (aiw- — ai272p+j) mod 3.



Fix any integer j, where 1 < 5 < P. Then column j being monochromatic
is equivalent to column P + j being monochromatic, which is equivalent to
column 2P + j being monochromatic. Hence, it suffices to count the number of
monochromatic columns in the first P columns of A and multiply by 3. Now,

let 1<¢<nand1<j<P. Since kjj =7 —byjpi =J — Vp;lJ pi, the color in

7

entry %, j is

= (52 +p) mods3

Conversely, let (v1,ve,...,v,) be any n-tuple such that 1 < v; < p;. Since
D1, P2, -.-, Dn, are coprimes, the Chinese Remainder Theorem guarantees a unique
j€{1,2,..., P} such that j = v;(mod p;) for each i € {1,2,...,n}. Thus, the
mapping of j € {1,2, ..., P} to (k1j, k2j, ..., knj) is a 1-1 correspondence.

Let j € {1,2,..., P} be such that column j of A is monochromatic with

common color aq; = agj = -+ = an;. Then, for ¢ € {1,2,...,n}, we have
aij = (J—;Ij” “+ pl) mod 3
kij J — aijpi + pipi(mod 3)

Jj —ai;s + p;s(mod 3)

since p; = s(mod 3). Define 5; = j — a1;s. Then, column j is monochro-
matic if and only if

kij = 6j “+ pls(mod 3),

forall i € {1,2,...,n}. Let v;; = (8; + pis) mod 3. Column j is monochromatic
if and only if k;; = ~;;(mod 3) meaning that setting a;; = w, then 1 <
3ouj + 7vi; < pi or, equivalently, {—lfgi]‘] <y < V—i;'“jJ = RS _ [—"”3751.
For a fixed ~;; there are

pi;5+ {sfg:yijJ + \"Yijg*lJ +1 = pi;5+ S*g:)’ijJ + {’ﬁj;&
pi;5_|_ S*((ﬁfrpés) mod 3)J + {((ﬁfrﬂis)gmod 3)+2J

solutions for a;; and hence for k;;. Summing over the three possibilities for 3;,
multiplying the numbers of solutions for each row, and multiplying the sum by
3, we obtain the desired expression for the count of monochromatic columns in

A.



pi=s {S-(ﬁ;nodfi)J N {(6m023)+2J>

pi—s r—((6+3s) mod3)J N {((5—1—5) H310d3)+2J>

(ﬁ pi—s r—((6+§s)mod3)J N {((BHS)?Od?)HzJ)

- 322:13[ tﬁ pi;5+{5—((5+P5)m0d3)J+{((5+p5)m0d3)+2J'

B=0 p=0i=t,+1 3 3

Next, we consider the case where for all i € {1,...,n} either p; = 1(mod 3)
or p; = 2(mod 3).

Lemma 2 For fired h and n such that 1 < h < n, assume p1,...., D, are co-
primes, p; = 1(mod 3) for 1 <i < h, p; = 2(mod 3) for h+ 1 <1i < n and to,
tl, t2, tg, t4, t5,t6 satzsfy 0= to S tl S t2 S tg =h S t4 S t5 S t6. Then

N(3;plap25 -5 Pnj Oa 15 25 Oa 15 2;t1;t2;t3;t4;t5) =

pi— S

3 + Gﬁsvﬂﬁ)

2 2 2 2 i=t3(s—1)4p+1
SYIIT I
B1=0 B2=0

s=1p=01i=t3(s_1)4,+1
where G, 5 = {MJ + {WI

Proof. Let P = p1,....,pn. Let Abethe (3;p1,p2, ..., 0n;0,1,2,0,1,2;t1,ta,t3,t4,t5)
canonical color matrix. Denote the initial color of row ¢ by p;. By definition,
bij = LJ;D;llJ, Qi3 = (LJ;D;IIJ + pl) mod 3 and kij :] - b”pl Let il and i2 satisfy
1 <1 <'ig < h. Observe that, for all j € {1,2,..., P}, we have

o . ) — i=1 ) Ptj—1 .
(aiy,j — iy, p+j) mod 3 = I +piy — Piy J - pn) mod 3
= (|53 - & —|5=]) mod3
L ~21 | 1 1
= ([Z2] -2 |1 ) mod 3
| Pig | Dig Dig
_ j—1 ) Ptj—1 )
= |72 | + piy — { Pig J —pm) mod 3

= (aiw- —CLi27P+j) mod 3

since £~ = £ (mod 3). Similarly,
Diy Dig

(ailyj — CLl'hQPJrj) mod 3 = (aiw- — ai272p+j) mod 3.



We can show the same result for 47 and 4o that satisfy h +1 < 43 < 49 < n.
Fix any integer j, where 1 < 5 < P. Then column j being h-bichromatic is
equivalent to column P + j being h-bichromatic, which is equivalent to column
2P + j being h-bichromatic.

Next, we show that if j is h-bihromatic then one and only one of the columns
j, j+ P and j+ 2P is a monochromatic column. Let j € {1,..., P} and assume
column j is h-bichromatic. Let us denote by ordered pair (c,,¢;) the entries

of a h-bichromatic column where a;; = ¢, for all ¢ € {1,...,h} and a;; = ¢
for alli € {h+1,...,n}. Note, that if ¢, = ¢; then we have a monochromatic
column. Let 7, = £ mod 3. Then r; = 2" " mod 3 when i = 1,...,h, and

ri = 2" "1 mod 3 when i = h + 1,...,n. If (n — h) is even, the entries of h-
bichromatic columns j + P and j + 2P are ((¢, + 1) mod 3, (¢; + 2) mod 3) and
((cy +2) mod 3, (¢; + 1) mod 3) respectively and if (n — h) is odd, the entries
of h-bichromatic columns j+ P and j 4+ 2P are ((¢, +2) mod 3, (¢; + 1) mod 3)
and ((¢, + 1) mod 3, (¢; + 2) mod 3) respectively. In either case, for one and
only one of these pairs of the form (a,b), a = b, so one and only one of the
h-bichromatic columns j, j+ P and j 4+ 2P is a monochromatic column. Hence,
the number of h-bichromatic columns in the first P columns is equal to the
number of monochromatic columns in A. So, it suffices to count the number of
h-bichromatic columns in the first P columns.

Let j € {1,2,..., P} such that the column j of A is h-bichromatic with
a15 = @25 = ... = Qhpj and Ap+1,5 = Q42,5 = +-- = Qnj- Then, for 1 S 7 S h,, we
have

CLlj

(J;L + pl-) mod 3
J —ayjpi + pipi(mod 3)
J —a1j + pi(mod 3)

since p; = 1(mod 3) and for h + 1 < i < n, we have

a,h+17j = (J—;]j” “+ p’L) mod 3
kij J — @ny1,5pi + pipi(mod 3)
j — 26Lh+17j + 2pl(m0d 3)

since p; = 2(mod 3).

Define 3; = j — a1; and 6;- = j — 2ap41,5- Then, column j is h-bichromatic
if and only if k;; = (8; + ps)(mod3) for all ¢ € {1,2,...,h} and k;; = (6; +
2p;)(mod 3) for alli € {h+1,...,n}.

Let vi; = (8; + pi)(mod 3) for i € {1,2,...,h} and 7;; = () + 2p;)(mod 3)
fori € {h+1,...,n}. Column j is h-bichromatic if and only if k;; = ~;; ( mod 3)
meaning setting a;; = w then 1 < 3ay; + 755 < p; or equivalently, for i €

1,2, ..., h}, [“TV] <oy < {%J - p_;l_PT*l] and for i € {h+1,...,n},



[1—3%-]‘1 < a;; < L—E’“J = p—i;Q - [—’”{;21. For a fixed ~;; there are
+ +

{lfgi]‘J Vijg*lJ_i_l = el |ls %]J—FVUHJ
= moly | 1- ((ﬁ]ﬂ;)mod 3>J T {((ﬁﬁm);od 3>+2J

solutions for a;; and hence for k;; if i € {1, ..., h} and

Q,S_FF 'mJ_’_VI] J+1 _ gi;2+ 2— %;J_FVIJJ&
S _27<<ﬁj+2§i>mod 3>J N {((ﬁ;ﬂpi)gmod 3>+2J

solutions for a;; and hence for k;; if i € {h +1,...,n}. By similar arguments
as in proof of Lemma 1, we know that there is a 1-1 correspondence between
je{1,2,....,P} and (kij, kaj, ..., knj). Summing over the three possibilities for
both 3; and 6;-, multiplying the number of solutions for each row, we obtain
the count of h-bichromatic columns in the first P columns of A and hence the
desired expression for the count of monochromatic columns in A.

22: 22: (ﬁpl— {1—(6gnod3)J +{(Bmoi3)+2J>

B=0pg"=0 \i=1
-2 pi—1 ((B—|—1 ) mod 3) (8+1) mod 3) +
<1—1t_1[+1 3 " J * \; 3 J)
-3 pi—1 ((64—2 ) mod 3) (8+2) mod 3) +
(z—l;[+1 5 L * { 3 J)
(ﬁ pi=2, 2 (8 modBJ {ﬁmodi& +2J>
3
i=tz+1 L
o opi—2 | 2—((8 +1)mod 3) (8" + 1) mod 3) + 2
+ +
i=tg+1 3 L 3 3
mopi—2 | 2— (8 +2) mod 3) ((8"+2) mod 3) + 2
e e A s s 1}

Rewriting 0 as (1 and B/ as B2 we get

t3(s—1)+p+1

Ny = > S I

2=0s=1p=0i=tg,_1y},+1

pi—s {S* ((Bs +395) mod 3)J 4 \\((ﬁs +pS);n0d 3) +2J )

@

I~
Il
o

@

The final case is where for some k, 3 | px. Of course under the assumption
that the p; are coprime there is at most one such k.



Lemma 3 Forn > 2 assume p1,...,py, are coprime, 3 | pn, pn € {0,1,2}, and
to, tl, t2, tg, t4, t5,t6 satzsfy 0 :to S tl S t2 S tg S t4 S t5 S t6 — 1. Then

N(3apla ooy Pnj Oa 15 25 Oa 15 25 Pns; tl; t2; t3; t4; t5a tﬁ) =
%N(3apla ooy Pn—13 0; 15 25 Oa 15 Z;tla 2,13, t4, t5)

Proof. Let P =pips---p,. Let A be the
(3;01,p2, -+ -, Pn; 0,1,2,0,1,2, pp; t1, ta, t3, ta, t5, tg) canonical color matrix. De-
note the initial color of row ¢ by p;. By definition, b;; = Ljp;lj, a;; = (LJP;IJ +
pz) mod 3 and kij :] - b”pl

Observe that, for all i € {1,2,...,n— 1} and j € {1,2,..., P}, we have

(ai; —a;,pyj) mod3 = j;il + pi — %J — pl-) mod 3
= (|52 -2-[&]) moas
= —p%) mod 3
0

since 3 | 5. Similarly,

(ai; — ai2py;) mod 3 =0.

Also,
(a:n,j - a:n,P+j) mod3 = J;D;nl —+ Pn — %J — pn) mod 3
= (5] - [ o

= —5) mod 3 € {1,2}

since 31 %. Let r = (—%) mod 3. Similarly,
(@n,j — an2p+;) mod 3 = (2r) mod 3 € {1, 2}.

Fix any integer j, where 1 < j < P. Then column j being (n — 1)-bichromatic
is equivalent to column P + j being (n — 1)-bichromatic, which is equivalent to
column 2P + j being (n — 1)-bichromatic. It is easy to see also that one and
only one of columns j, P + j or 2P + j is monochromatic. So, the number
of monochromatic columns in A is equal to the number of (n — 1)-bichromatic
columns in the first P columns of A.
Let B be the

(3;01,p2, -+ -, Pn—-1;0,1,2,0,1,2; 1, ta, t3,t4,t5) canonical color matrix. Then
the first n — 1 rows of A can be viewed as p, copies of matrix B side by
side. So the number of (n — 1)-bichromatic columns in A is p, N(B) and hence
N(A) =5 N(B). =

Using these 3 lemmas then, the general case can be solved.



Theorem 4 Let p1,....,pn be coprime integers, p1,...,pn € {0,1,2} and let
P = pips...pn. Let A be the color matriz

(P1y--+sPn; P15 - -, Pn) of width 3P. Then the number of Monochromatic Columns
can be determined. The only cases that exist are

(1) p; = s(mod 3) fori=1,...,n and for fized s € {0, 1,2}.

(2) p; = 1(mod 3) fori=1,...,h and p; = 2(mod 3) fori=h+1,...,n where
n>2and 1< h<n.

(3) pn = 0(mod 3) and p; = s(mod 3) for 1 <i <n and for fizred s € {1,2}
where n > 2.

(4) pn = 0(mod3), p; = 1(mod3) for i = 1,...,h and p; = 2(mod3) for
i=h+1,....,.n—1 wheren>3 and 1 <h<n-—1.
4 Monochromatic blocks

In this section, the number of monochromatic blocks is computed in the setting
of Lemma 1.

Define B(m;p1,p2, - - -, Pn; C15C2, - « -5 Cri 1, ...y tr—1) t0 be the number of monochro-
matic blocks in the canonical color matrix (m; p1, pa, ..., Pn; €1, €2, -« s Crit1,y oy tr1)
of width mP.

Define By(m; p1,p2; - - -, Pn; C1,C2, - - ., Cri t1, ..., tr_1) to be the number of monochro-

matic blocks of width ¢ in the canonical color matrix
(Mm;p1,p2, -« Pn; C1,C2,5 oy Cri b1,y ooy trq) of width mP.
Define N'(m;p1,pa, .., Pn;C1,C2, -« -, Crit1, ..., tr—1) to be the number of monochro-
matic columns such that for a monochromatic column j, k;; # 1 foralll <i <n
in the canonical color matrix (m;p1, P2, ..., Pn;C1, €2y« ooy Cri b1y ey brt).

Lemma 5 Assume p1, ..., p, are pairwise coprime, p; = s(mod 3) for 1 <1
n and fized s € {1,2}, p = min{p1,...,pn} and to,t1,to,t5 satisfy 0 = to
tl S t2 S tg. Then

<
<

1.

2 2 tot+1
i — S
B(3;p1,pa, i 0,1, 2510, 82) = 3> [ ] (p3 +Gﬁ7p,s>

B=0 p=0 i=t,+1

2 2 tpt+1 Di—s
BN IBINE S

B=0 p=0 i=t,+1

where

G o= {s —((8 +§s) mod 3)J n {((5 + ps) I3IlOd 3) + 2J



and

s — ((8+ ps) mod 3)J N {((54-/)5) mod 3) + 1

Hﬁ,p,s = \‘ 3

Bp(3;p1,P2s - -5 Pn;0,1,2;t1,t2) =

3

t2 n
H (i) H (qi)

i=t1+1 i=to+1

@+1 [ (@)

i=to+1

t2 n
II @ [ @+1v

i=t1+1 i=to+1

t1
3T (e +1)
i=1

t1 t2

t1
317 (a0
i=1

|

for p € {p1,...,pey }
for p € {pty, -, Pty }

for p € {pty, -, Pn}

where q; = P3P

Proof. As usual, let P = p1ps---pp. Let A be the
(3;p1,p2, -+, Pn; 0,1, 2; 1, t2) canonical color matrix. Denote the initial color of
row ¢ by p;. As in Lemma 1, only the number of monochromatic blocks in
the first P columns of matrix A need to be computed to know the total in
matrix A. This is due to the symmetry noted in Lemma 1 and to the fact
that for any canonical color matrix, a1 p # a;, p4+1 meaning columns P and
P + 1 cannot be in the same monochromatic block. Similarly, this can be seen
for columns 2P and 2P + 1. Let j be the first column of a monochromatic
block. If j # 1, column a;; # a;j—1 for some i. In either case, k;; = 1 for
some 4. The number of monochromatic blocks then is equal to the number of
monochromatic columns where k;; = 1 for some 7. This can be computed by
subtracting the number of monochromatic columns where k;; # 1 for all ¢ from
the total number of monochromatic columns. Returning to the proof of Lemma
1, a column j was monochromatic if and only if k;; = j — a1;5 + p;s(mod 3)
for all i. Now we add the extra condition that k;; # 1 for some i. Defining

B; and v;; as in Lemma 1, for j € {1,..., P}, j is a monochromatic column
where for all 4, k;; # 1 if and only if for all ¢, k;; # 1 and k;; = ~;;(mod 3)
meaning setting o;; = (kjg;'“) then 2 < 3a;; + 7;; < p; or, equivalently,

2—7ij L PiYij | _ pi=$
’73]-|SOZ'LJS\‘ 3]J— -

3 [%1 For a fixed v;; there are

R el R o RN e A

solutions for c;; and hence for k;;. Summing over the three possibilities for 3; ,
multiplying the numbers of solutions for each row, and multiplying the sum by
3, we obtain the desired expression for the count of monochromatic columns j

10

i—8 s—((Bj+pis) mod 3) ((Bj+pis) mod 3)+1
pT + p3 J + L £ 3 J



such that for all 4, k;; # 1.

N(A) = 3§<§pi;s+ r—(ﬁénod:s)J . {(Bmoc;fi)—li

ﬁ pig—s_i_r—((ﬁ-i-s)mod@J +{((5+S)mod3)+1J

i=t;+1 3 3
Zlilpl?)er r—((5+§s)mod3)J N {((6+2S)?0d3)+1J>

322:13[ tﬁl (pl-g—s_i_{S-((ﬁ-ﬁ-gs)modf&)J+{((5+ps)§1od3)+1J>'

B=0 p=0 i=t,+1

Then
B(A) = N(A) — N'(A).

Now, consider an arbitrary monochromatic block of width ¢ consisting of
columns j,...,j+¢q¢—1. Then for 1 <i <n, 1 <kjjrq-1 =kij+q—1<p;
which implies 1 < k;; < p; — ¢+ 1. Hence, g cannot exceed p = min(ps, ..., pn)-
So, j is the first column of a monochromatic block of width ¢ if and only if j
is the first column of a monochromatic block and k;; = p; — ¢ + 1 for some i
if and only if j is a monochromatic column and for some iq,%2, k;;; = 1 and
kij =pi —q+ 1.

Consider the case when ¢ = p = min(py, ..., p,). Assume p, = p.

arj = (% +pl-) mod 3

ki J = arjpi + pipi(mod 3)

Jj — ar;s + p;s(mod 3)

Jj— arjS + pis — prs + prs(mod 3)
krj — prs + pis(mod 3)

1 — prs+ pis(mod 3)

noting that 1 < k,; < p, —p+1 = 1. Let v;; = (1 — prs + p;s) mod 3.
Then j is the first column of a monochromatic block of width p if and only if
1 <kij <p; —p+1and k; = v;;(mod 3) meaning setting a;; = w, then
1 < 3ayj +vi; < pi —p+ 1 or, equivalently, P;ﬁj] <y < Viﬁpgl"ﬁﬁ =
ip o | 1=
p 3 p + \‘ 3 J J .
There are

pi;p + {1*3%]} + VijgilJ +1 = pi;p + 1*3%']‘J + VJ;QJ)
_ i— 1—((1—prs+pis) mod 3) ((1=prs+pis) mod 3)42
B2 jpuskmeddl | 1 | (Uopertng med 2142 )

solutions for a;; and hence for k;;. Multiplying the numbers of solutions for
each row, and multiplying the sum by 3, we obtain the desired expression for
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the count of monochromatic blocks of width p.

Lo — 1— ((1— prs) mod 3) ((1 = prs) mod 3) + 2
B,(3;p1,p2,- -, pn;t17t2)_3<i]__[1p 3 er{ l; J*{ L 3 J
‘2 pi — P 1—((1 - prs+ s) mod3) (1 — prs+ s) mod 3) + 2
+ +
izlt_llﬂ 3 { 3 J { 3 J
S pi—Dp 1—((1— prs+2s)mod 3) ((1 = prs+2s) mod 3) + 2
+ +
i B[t | oo spmenas)
2 t2p41
- pi— S 1—((1 — prs+ ps) mod 3) ((1 = prs+ ps) mod 3) + 2
e e e e e
Noting that
1—((1 = prs+ ps) mod 3) N (I —=prs+ps)mod3)+2| [ 1forp.=p
3 3 | Oforp.#p
then
t1 to n
3l @+n II @ II (@ for pr € {p1,....,pe; }
i=1 i=tq 41 i=to+1
t1 to n
By (3;p1,p2,- -, Pni0,1,25t1,t2) =4 3]] (@) [ (w+1) I (a0 for pr € {pty,.., Pty }
=1 i=tq+1 i=tg+1
t1 to n
3[T @) II (@ II (@+1) for p € {Pig, P}
=1 i=tq+1 i=tg+1
where ¢; = P52, m

5 Counting Monochromatic Columns in m num-
ber of Colors

Next, we discuss the Monochromatic Column problem for arbitrary m when
all the p; are pairwise coprime. The arguments given in proof of Lemma 1
can be suitably adapted in this case. We give the statement without proof.
This improves the result of Jain and Nagpaul [2] as they assume the additional
condition that all rows start with the same color.

Lemma 6 Assume pi,...,pn are coprime, p; = s(modm) for 1 < i < n and
fized s € {1,2,...,m} and to,t1,...,tm satisfy 0 = tog < t1 < tog < -+ < by
Then

m—1m—1 tpt1 Di— 8
N(m;plaPQa"'apn;oa1525"'7m_1;t1;t25"';tm71):mz H H ( lm +Gﬁ,p,s>
B=0 p=0 i=t,+1

where Gg , s = {S*W’*P: mod m)J T L((ﬁﬂm) mod m)erflJ'
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Lemma 3 can be also be generalized to a more general case, namely when m
is an arbitrary prime. Again, this generalization is straight forward so we only
give the statement here.

Lemma 7 For a prime m and n > 2 assume pi,...,p, are coprime, m | pn,
pn € {0,1,...,m — 1}, and to,t1, ..., tan_1ym satisfy 0 = to < t; < --- <
tim—1)m- Then

N(m;pla -os Pnj Oa 15 25 . '705 15 2apn;tla . ';t(mfl)m) =
%N(mapla ooy Pn—15 0; 1; 25 . '505 15 Z;tla . ';t(mfl)mfl)'
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