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Abstract

Let p1, p2,..., pn be a sequence of n pairwise coprime positive integers,
and let P = p1p2...pn. Let 0, 1, ...,m − 1 be a sequence of m different
colors. Let A be an n × mP matrix of colors in which row i consists of
blocks of pi consecutive entries of the same color, with colors 0 through
m − 1 repeated cyclically. The Monochromatic Column problem is to
determine the number of columns of A in which every entry is the same
color. The solution for m = 3 colors is presented and proved.
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1 Introduction

Motivated by a question raised in [1] regarding finding an alignment with op-
timal score according to a given scoring scheme for given n sequences of char-
acters from a fixed alphabet, Nagpaul and Jain in [2], introduce the following
Monochromatic Column problem. Let p1, p2,..., pn be a sequence of n pairwise
coprime positive integers, and let P = p1p2...pn. Let 0, 1, ..., m−1 be a sequence
of m colors. Let A be an n × mP matrix of colors in which row i consists of
blocks of pi consecutive entries of the same color, with colors 0 through m − 1
repeated cyclically (see Section 2 for the precise definition). The Monochro-
matic Column problem is to count the number of columns of A in which every
entry in the column is the same color.

In [2], Nagpaul and Jain solve the Monochromatic Column problem for the
case of m = 2 colors. In the case of m > 2 colors, they solve the problem
under the constraints that all rows begin with the same color and that, for
1 ≤ i1 < i2 ≤ n, the integers pi1 and pi2 are congruent to each other modulo
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m. Here the Monochromatic Column problem for m = 3 colors, which are
necessarily 0, 1, and 2, is solved.

To illustrate, let n = 2, p1 = 2, and p2 = 3. Then P = 6 and any matrix
will be 2 × 18. One such matrix is the following:

A =
(

0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0

)
.

For this A, the number of monochromatic columns is 6. Note that the first
row starts with a block of color 0, while the second row starts with a block of
color 1. Since there are 3 choices of starting color for each row, there are 32 = 9
matrices possible.

Here, the Monochromatic Column problem for m = 3 without constraints is
solved (Section 3). Section 4 counts the monochromatic column blocks, where
consecutive monochromatic columns of the same color form monochromatic
blocks. In Section 5, we discuss the monochromatic column problem for ar-
bitrary number of colors under certain special cases. Section 2 lays out the
terminology and notation.

2 Terminology and Notation

Let m be a positive integer. The colors for m are the integers 0, 1, ...,m − 1.
An r × s color matrix is an r × s matrix A = (aij) in which every entry is one
of the m colors. Column j of A is a monochromatic column if ai1j = ai2j , for
all i1 and i2 satisfying 1 ≤ i1 < i2 ≤ r. For a positive integer q, row i of A is
q-blocked with initial color ρ if q|s and, for 1 ≤ j ≤ s, the i, j entry is the color

aij =
(⌊

j − 1
q

⌋
+ ρ

)
mod m.

A is the (q1, q2, . . . , qn; ρ1, ρ2, . . . , ρn) color matrix of width s if, for every i sat-
isfying 1 ≤ i ≤ n, we have qi|s and row i of A is qi-blocked with initial color
ρi. The sequence p1, p2, . . . , pn of positive integers is coprime if pi1 and pi2 are
coprime, for all i1 and i2 satisfying 1 ≤ i1 < i2 ≤ n. Let P = p1p2 · · ·pn.
Note that the permutation of rows will not affect the number of monochro-
matic columns. The notation (m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) will
mean that rows tk−1 + 1 to tk start with color ck for 1 ≤ k ≤ r defining t0 = 0
and tr = n. The Monochromatic Column problem is to determine the count
N (m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) of monochromatic columns in the
(m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) color matrix A of width mP . Given
a color matrix A of width mP , from here out just referred to as a canonical
color matrix, N (A) will be the number of monochromatic columns in A.

For i = 1, 2, ..., n and j = 1, 2, ...,mP , define

bij =
⌊

j − 1
pi

⌋

and
kij = j − bijpi.
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Then, 1 ≤ kij ≤ pi, and the color in entry i, j is

aij = (bij + ρi) mod m

where ρi is the initial color of row i.
Define a column j to be an h-bichromatic column if for fixed h, aij = cu for

1 ≤ i ≤ h and aij = cl for h + 1 ≤ i ≤ n, for fixed cu, cl ∈ {0, 1, ...,m − 1}.
In the case cu = cl, the column j becomes a monochromatic column. Define
a set of consecutive monochromatic columns {j, . . . , j + t} for some t to be a
monochromatic block if a1j = a1k for all k satisfying j ≤ k ≤ j + t and if j 6= 1,
column j − 1 is not monochromatic and if j + t 6= n, column j + t + 1 is not
monochromatic.

3 Counting Monochromatic Columns in 3 Colors

To solve the Monochromatic Column problem for m = 3, we consider three
cases. The first case requires that the pi are pairwise congruent modulo 3.

Lemma 1 Assume p1, ..., pn are coprime, pi ≡ s(mod 3) for 1 ≤ i ≤ n and
fixed s ∈ {1, 2} and t0, t1, t2, t3 satisfy 0 = t0 ≤ t1 ≤ t2 ≤ t3. Then

N (3; p1, p2, . . . , pn; 0, 1, 2; t1, t2) = 3
2∑

β=0

2∏

ρ=0

tρ+1∏

i=tρ+1

(
pi − s

3
+ Gβ,ρ,s

)

where Gβ,ρ,s =
⌊

s−((β+ρs) mod 3)
3

⌋
+
⌊

((β+ρs) mod 3)+2
3

⌋
.

Proof. Let P = p1p2 · · ·pn. Let A be the (3; p1, p2, ..., pn; 0, 1, 2; t1, t2)
canonical color matrix. Denote the initial color of row i by ρi. By definition,

aij =
(⌊

j − 1
pi

⌋
+ ρi

)
mod 3.

Let i1 and i2 satisfy 1 ≤ i1 ≤ i2 ≤ n. Observe that, for all j ∈ {1, 2, ..., P}, we
have

(ai1,j − ai1,P+j) mod 3 =
(⌊

j−1
pi1

⌋
+ ρi1 −

⌊
P+j−1

pi1

⌋
− ρi1

)
mod 3

=
(⌊

j−1
pi1

⌋
− P

pi1
−
⌊

j−1
pi1

⌋)
mod 3

=
(⌊

j−1
pi2

⌋
− P

pi2
−
⌊

j−1
pi2

⌋)
mod 3

=
(⌊

j−1
pi2

⌋
+ ρi2 −

⌊
P+j−1

pi2

⌋
− ρi2

)
mod 3

= (ai2,j − ai2,P+j) mod 3

since P
pi

≡ P
pj

(mod 3). Similarly,

(ai1,j − ai1,2P+j) mod 3 = (ai2,j − ai2,2P+j) mod 3.
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Fix any integer j, where 1 ≤ j ≤ P . Then column j being monochromatic
is equivalent to column P + j being monochromatic, which is equivalent to
column 2P + j being monochromatic. Hence, it suffices to count the number of
monochromatic columns in the first P columns of A and multiply by 3. Now,
let 1 ≤ i ≤ n and 1 ≤ j ≤ P . Since kij = j − bijpi = j −

⌊
j−1
pi

⌋
pi, the color in

entry i, j is
aij =

(⌊
j−1
pi

⌋
+ ρi

)
mod 3

=
(

j−kij

pi
+ ρi

)
mod 3

Conversely, let (v1, v2, ..., vn) be any n-tuple such that 1 ≤ vi ≤ pi. Since
p1, p2, ..., pn are coprimes, the Chinese Remainder Theorem guarantees a unique
j ∈ {1, 2, . . ., P} such that j ≡ vi(mod pi) for each i ∈ {1, 2, . . ., n}. Thus, the
mapping of j ∈ {1, 2, ..., P} to (k1j, k2j, ..., knj) is a 1-1 correspondence.

Let j ∈ {1, 2, ..., P} be such that column j of A is monochromatic with
common color a1j = a2j = · · · = anj. Then, for i ∈ {1, 2, ..., n}, we have

a1j =
(

j−kij

pi
+ ρi

)
mod 3

kij ≡ j − a1jpi + ρipi(mod 3)
≡ j − a1js + ρis(mod 3)

since pi ≡ s(mod 3). Define βj = j − a1js. Then, column j is monochro-
matic if and only if

kij ≡ βj + ρis(mod 3),

for all i ∈ {1, 2, ..., n}. Let γij = (βj + ρis) mod 3. Column j is monochromatic
if and only if kij ≡ γij(mod 3) meaning that setting αij = (kij−γij )

3
, then 1 ≤

3αij + γij ≤ pi or, equivalently,
⌈

1−γij

3

⌉
≤ αij ≤

⌊
pi−γij

3

⌋
= pi−s

3 −
⌈

γij−s
3

⌉
.

For a fixed γij there are

pi−s
3 +

⌊
s−γij

3

⌋
+
⌊

γij−1
3

⌋
+ 1 = pi−s

3 +
⌊

s−γij

3

⌋
+
⌊

γij+2
3

⌋

= pi−s
3 +

⌊
s−((βj+ρis) mod 3)

3

⌋
+
⌊

((βj+ρis) mod 3)+2
3

⌋

solutions for αij and hence for kij. Summing over the three possibilities for βj ,
multiplying the numbers of solutions for each row, and multiplying the sum by
3, we obtain the desired expression for the count of monochromatic columns in
A.
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N (A) = 3
2∑

β=0

(
t1∏

i=1

pi − s

3
+
⌊

s − (β mod 3)
3

⌋
+
⌊

(β mod 3) + 2
3

⌋)

(
t2∏

i=t1+1

pi − s

3
+
⌊

s − ((β + s) mod 3)
3

⌋
+
⌊

((β + s) mod 3) + 2
3

⌋)

(
n∏

i=t2+1

pi − s

3
+
⌊

s − ((β + 2s) mod 3)
3

⌋
+
⌊

((β + 2s) mod 3) + 2
3

⌋)

= 3
2∑

β=0

2∏

ρ=0

tρ+1∏

i=tρ+1

pi − s

3
+
⌊

s − ((β + ρs) mod 3)
3

⌋
+
⌊

((β + ρs) mod 3) + 2
3

⌋
.

Next, we consider the case where for all i ∈ {1, . . . , n} either pi ≡ 1(mod 3)
or pi ≡ 2(mod 3).

Lemma 2 For fixed h and n such that 1 ≤ h < n, assume p1, ...., pn are co-
primes, pi ≡ 1(mod 3) for 1 ≤ i ≤ h, pi ≡ 2(mod 3) for h + 1 ≤ i ≤ n and t0,
t1, t2, t3, t4, t5, t6 satisfy 0 = t0 ≤ t1 ≤ t2 ≤ t3 = h ≤ t4 ≤ t5 ≤ t6. Then

N (3; p1, p2, . . . , pn; 0, 1, 2, 0,1, 2; t1, t2, t3, t4, t5) =
2∑

β1=0

2∑

β2=0

2∏

s=1

2∏

ρ=0

i=t3(s−1)+ρ+1∏

i=t3(s−1)+ρ+1

(
pi − s

3
+ Gβs,ρ,s

)

where Gβ,ρ,s =
⌊

s−((β+ρs) mod 3)
3

⌋
+
⌊

((β+ρs) mod 3)+2
3

⌋
.

Proof. Let P = p1, ...., pn. Let A be the (3; p1, p2, . . . , pn; 0, 1, 2, 0,1, 2; t1, t2, t3, t4, t5)
canonical color matrix. Denote the initial color of row i by ρi. By definition,
bij = b j−1

pi
c, aij = (b j−1

pi
c + ρi) mod 3 and kij = j − bijpi. Let i1 and i2 satisfy

1 ≤ i1 ≤ i2 ≤ h. Observe that, for all j ∈ {1, 2, ..., P}, we have

(ai1,j − ai1,P+j) mod 3 =
(⌊

j−1
pi1

⌋
+ ρi1 −

⌊
P+j−1

pi1

⌋
− ρi1

)
mod 3

=
(⌊

j−1
pi1

⌋
− P

pi1
−
⌊

j−1
pi1

⌋)
mod 3

=
(⌊

j−1
pi2

⌋
− P

pi2
−
⌊

j−1
pi2

⌋)
mod 3

=
(⌊

j−1
pi2

⌋
+ ρi2 −

⌊
P+j−1

pi2

⌋
− ρi2

)
mod 3

= (ai2,j − ai2,P+j) mod 3

since P
pi1

≡ P
pi2

(mod 3). Similarly,

(ai1,j − ai1,2P+j) mod 3 = (ai2,j − ai2,2P+j) mod 3.

5



We can show the same result for i1 and i2 that satisfy h + 1 ≤ i1 ≤ i2 ≤ n.
Fix any integer j, where 1 ≤ j ≤ P . Then column j being h-bichromatic is
equivalent to column P + j being h-bichromatic, which is equivalent to column
2P + j being h-bichromatic.

Next, we show that if j is h-bihromatic then one and only one of the columns
j, j +P and j +2P is a monochromatic column. Let j ∈ {1, . . . , P} and assume
column j is h-bichromatic. Let us denote by ordered pair (cu, cl) the entries
of a h-bichromatic column where aij = cu for all i ∈ {1, . . . , h} and aij = cl

for all i ∈ {h + 1, . . . , n}. Note, that if cu = cl then we have a monochromatic
column. Let ri = P

pi
mod 3. Then ri = 2n−h mod 3 when i = 1, ..., h, and

ri = 2n−h−1 mod 3 when i = h + 1, ..., n. If (n − h) is even, the entries of h-
bichromatic columns j + P and j + 2P are ((cu + 1) mod 3, (cl + 2) mod 3) and
((cu + 2) mod 3, (cl + 1) mod 3) respectively and if (n − h) is odd, the entries
of h-bichromatic columns j + P and j + 2P are ((cu + 2) mod 3, (cl + 1) mod 3)
and ((cu + 1) mod 3, (cl + 2) mod 3) respectively. In either case, for one and
only one of these pairs of the form (a, b), a = b, so one and only one of the
h-bichromatic columns j, j +P and j +2P is a monochromatic column. Hence,
the number of h-bichromatic columns in the first P columns is equal to the
number of monochromatic columns in A. So, it suffices to count the number of
h-bichromatic columns in the first P columns.

Let j ∈ {1, 2, ..., P} such that the column j of A is h-bichromatic with
a1j = a2j = ... = ahj and ah+1,j = ah+2,j = ... = anj. Then, for 1 ≤ i ≤ h, we
have

a1j =
(

j−kij

pi
+ ρi

)
mod 3

kij ≡ j − a1jpi + ρipi(mod 3)
≡ j − a1j + ρi(mod 3)

since pi ≡ 1(mod 3) and for h + 1 ≤ i ≤ n, we have

ah+1,j =
(

j−kij

pi
+ ρi

)
mod 3

kij ≡ j − ah+1,jpi + ρipi(mod 3)
≡ j − 2ah+1,j + 2ρi(mod 3)

since pi ≡ 2(mod 3).
Define βj = j − a1j and β

′

j = j − 2ah+1,j. Then, column j is h-bichromatic
if and only if kij ≡ (βj + ρi)(mod3) for all i ∈ {1, 2, ..., h} and kij ≡ (β

′

j +
2ρi)(mod 3) for all i ∈ {h + 1, ..., n}.

Let γij = (βj + ρi)(mod 3) for i ∈ {1, 2, ..., h} and γij = (β
′

j + 2ρi)(mod 3)
for i ∈ {h+1, . . . , n}. Column j is h-bichromatic if and only if kij ≡ γij( mod 3)
meaning setting αij = (kij−γij )

3
then 1 ≤ 3αij + γij ≤ pi or equivalently, for i ∈

{1, 2, ..., h},
⌈

1−γij

3

⌉
≤ αij ≤

⌊
pi−γij

3

⌋
= pi−1

3 −
⌈

γij−1
3

⌉
and for i ∈ {h+1, ..., n},
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⌈
1−γij

3

⌉
≤ αij ≤

⌊
pi−γij

3

⌋
= pi−2

3 −
⌈

γij−2
3

⌉
. For a fixed γij there are

pi−1
3 +

⌊
1−γij

3

⌋
+
⌊

γij−1
3

⌋
+ 1 = pi−1

3 +
⌊

1−γij

3

⌋
+
⌊

γij+2
3

⌋

= pi−1
3 +

⌊
1−((βj+ρi) mod 3)

3

⌋
+
⌊

((βj+ρi) mod 3)+2
3

⌋

solutions for αij and hence for kij if i ∈ {1, ..., h} and

pi−s
3 +

⌊
2−γij

3

⌋
+
⌊

γij−1
3

⌋
+ 1 = pi−2

3 +
⌊

2−γij

3

⌋
+
⌊

γij+2
3

⌋

= pi−2
3

+
⌊

2−((β
′
j+2ρi) mod 3)

3

⌋
+
⌊

((β
′
j+2ρi) mod 3)+2

3

⌋

solutions for αij and hence for kij if i ∈ {h + 1, ..., n}. By similar arguments
as in proof of Lemma 1, we know that there is a 1-1 correspondence between
j ∈ {1, 2, ..., P} and (k1j, k2j, ..., knj). Summing over the three possibilities for
both βj and β

′

j , multiplying the number of solutions for each row, we obtain
the count of h-bichromatic columns in the first P columns of A and hence the
desired expression for the count of monochromatic columns in A.

N(A) =
2∑

β=0

2∑

β
′
=0

(
t1∏

i=1

pi − 1

3
+

⌊
1 − (β mod 3)

3

⌋
+

⌊
(β mod 3) + 2

3

⌋)

(
t2∏

i=t1+1

pi − 1

3
+

⌊
1 − ((β + 1) mod 3)

3

⌋
+

⌊
((β + 1) mod 3) + 2

3

⌋)

(
t3∏

i=t2+1

pi − 1

3
+

⌊
1 − ((β + 2) mod 3)

3

⌋
+

⌊
((β + 2) mod 3) + 2

3

⌋)

(
t4∏

i=t3+1

pi − 2

3
+

⌊
2 − (β

′
mod 3)

3

⌋
+

⌊
(β

′
mod 3) + 2

3

⌋)

(
t5∏

i=t4+1

pi − 2

3
+

⌊
2 − ((β

′
+ 1) mod 3)

3

⌋
+

⌊
((β

′
+ 1) mod 3) + 2

3

⌋)

(
n∏

i=t5+1

pi − 2

3
+

⌊
2 − ((β

′
+ 2) mod 3)

3

⌋
+

⌊
((β

′
+ 2) mod 3) + 2

3

⌋)
.

Rewriting β as β1 and β
′

as β2 we get

N(A) =
2∑

β1=0

2∑

β2=0

2∏

s=1

2∏

ρ=0

t3(s−1)+ρ+1∏

i=t3(s−1)+ρ+1

pi − s

3
+

⌊
s − ((βs + ρs) mod 3)

3

⌋
+

⌊
((βs + ρs) mod 3) + 2

3

⌋
.

The final case is where for some k, 3 | pk. Of course under the assumption
that the pi are coprime there is at most one such k.
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Lemma 3 For n ≥ 2 assume p1, . . . , pn are coprime, 3 | pn, ρn ∈ {0, 1, 2}, and
t0, t1, t2, t3, t4, t5, t6 satisfy 0 = t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5 ≤ t6 − 1. Then

N (3; p1, ..., pn; 0, 1, 2, 0, 1, 2, ρn; t1, t2, t3, t4, t5, t6) =
pn

3 N (3; p1, ..., pn−1; 0, 1, 2, 0, 1,2; t1, t2, t3, t4, t5).

Proof. Let P = p1p2 · · ·pn. Let A be the
(3; p1, p2, . . . , pn; 0, 1, 2, 0,1,2, ρn; t1, t2, t3, t4, t5, t6) canonical color matrix. De-
note the initial color of row i by ρi. By definition, bij = b j−1

pi
c, aij = (b j−1

pi
c +

ρi) mod 3 and kij = j − bijpi

Observe that, for all i ∈ {1, 2, ..., n− 1} and j ∈ {1, 2, ..., P}, we have

(ai,j − ai,P+j) mod 3 =
(⌊

j−1
pi

⌋
+ ρi −

⌊
P+j−1

pi

⌋
− ρi

)
mod 3

=
(⌊

j−1
pi

⌋
− P

pi
−
⌊

j−1
pi

⌋)
mod 3

=
(
− P

pi

)
mod 3

= 0

since 3 | P
pi

. Similarly,

(ai,j − ai,2P+j) mod 3 = 0.

Also,

(an,j − an,P+j) mod 3 =
(⌊

j−1
pn

⌋
+ ρn −

⌊
P+j−1

pn

⌋
− ρn

)
mod 3

=
(⌊

j−1
pn

⌋
− P

pn
−
⌊

j−1
pn

⌋)
mod 3

=
(
− P

pn

)
mod 3 ∈ {1, 2}

since 3 - P
pn

. Let r =
(
− P

pn

)
mod 3. Similarly,

(an,j − an,2P+j) mod 3 = (2r) mod 3 ∈ {1, 2}.

Fix any integer j, where 1 ≤ j ≤ P . Then column j being (n − 1)-bichromatic
is equivalent to column P + j being (n− 1)-bichromatic, which is equivalent to
column 2P + j being (n − 1)-bichromatic. It is easy to see also that one and
only one of columns j, P + j or 2P + j is monochromatic. So, the number
of monochromatic columns in A is equal to the number of (n − 1)-bichromatic
columns in the first P columns of A.

Let B be the
(3; p1, p2, . . . , pn−1; 0, 1, 2, 0, 1, 2; t1, t2, t3, t4, t5) canonical color matrix. Then
the first n − 1 rows of A can be viewed as pn copies of matrix B side by
side. So the number of (n − 1)-bichromatic columns in A is pnN (B) and hence
N (A) = pn

3 N (B).

Using these 3 lemmas then, the general case can be solved.
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Theorem 4 Let p1, ...., pn be coprime integers, ρ1, . . . , ρn ∈ {0, 1, 2} and let
P = p1p2...pn. Let A be the color matrix
(p1, . . . , pn; ρ1, . . . , ρn) of width 3P . Then the number of Monochromatic Columns
can be determined. The only cases that exist are

(1) pi ≡ s(mod 3) for i = 1, ..., n and for fixed s ∈ {0, 1, 2}.

(2) pi ≡ 1(mod 3) for i = 1, ..., h and pi ≡ 2(mod 3) for i = h+1, ..., n where
n ≥ 2 and 1 ≤ h < n.

(3) pn ≡ 0(mod 3) and pi ≡ s(mod 3) for 1 ≤ i < n and for fixed s ∈ {1, 2}
where n ≥ 2.

(4) pn ≡ 0(mod3), pi ≡ 1(mod3) for i = 1, ..., h and pi ≡ 2(mod3) for
i = h + 1, ..., n− 1 where n ≥ 3 and 1 ≤ h < n − 1.

4 Monochromatic blocks

In this section, the number of monochromatic blocks is computed in the setting
of Lemma 1.

Define B(m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) to be the number of monochro-
matic blocks in the canonical color matrix (m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1)
of width mP .

Define Bq(m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) to be the number of monochro-
matic blocks of width q in the canonical color matrix
(m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) of width mP .

Define N ′(m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1) to be the number of monochro-
matic columns such that for a monochromatic column j, kij 6= 1 for all 1 ≤ i ≤ n
in the canonical color matrix (m; p1, p2, . . . , pn; c1, c2, . . . , cr; t1, ..., tr−1).

Lemma 5 Assume p1, ..., pn are pairwise coprime, pi ≡ s(mod 3) for 1 ≤ i ≤
n and fixed s ∈ {1, 2}, p = min{p1, . . . , pn} and t0, t1, t2, t3 satisfy 0 = t0 ≤
t1 ≤ t2 ≤ t3. Then

1.

B(3; p1, p2, ..., pn; 0, 1, 2; t1, t2) = 3
2∑

β=0

2∏

ρ=0

tρ+1∏

i=tρ+1

(
pi − s

3
+ Gβ,ρ,s

)

− 3
2∑

β=0

2∏

ρ=0

tρ+1∏

i=tρ+1

(
pi − s

3
+ Hβ,ρ,s

)

where

Gβ,ρ,s =
⌊

s − ((β + ρs) mod 3)
3

⌋
+
⌊

((β + ρs) mod 3) + 2
3

⌋

9



and

Hβ,ρ,s =
⌊

s − ((β + ρs) mod 3)
3

⌋
+
⌊

((β + ρs) mod 3) + 1
3

⌋
.

2.

Bp(3;p1, p2, . . . , pn ; 0,1,2; t1, t2) =





3

t1∏

i=1

(qi + 1)

t2∏

i=t1+1

(qi)
n∏

i=t2+1

(qi) for p ∈ {p1, ..., pt1}

3

t1∏

i=1

(qi)

t2∏

i=t1+1

(qi + 1)
n∏

i=t2+1

(qi) for p ∈ {pt1 , ..., pt2}

3

t1∏

i=1

(qi)

t2∏

i=t1+1

(qi)
n∏

i=t2+1

(qi + 1) for p ∈ {pt2 , ..., pn}

where qi = pi−p
3

.

Proof. As usual, let P = p1p2 · · ·pn. Let A be the
(3; p1, p2, ..., pn; 0, 1, 2; t1, t2) canonical color matrix. Denote the initial color of
row i by ρi. As in Lemma 1, only the number of monochromatic blocks in
the first P columns of matrix A need to be computed to know the total in
matrix A. This is due to the symmetry noted in Lemma 1 and to the fact
that for any canonical color matrix, a1,P 6= a1,P+1 meaning columns P and
P + 1 cannot be in the same monochromatic block. Similarly, this can be seen
for columns 2P and 2P + 1. Let j be the first column of a monochromatic
block. If j 6= 1, column ai,j 6= ai,j−1 for some i. In either case, kij = 1 for
some i. The number of monochromatic blocks then is equal to the number of
monochromatic columns where kij = 1 for some i. This can be computed by
subtracting the number of monochromatic columns where kij 6= 1 for all i from
the total number of monochromatic columns. Returning to the proof of Lemma
1, a column j was monochromatic if and only if kij ≡ j − a1js + ρis(mod 3)
for all i. Now we add the extra condition that kij 6= 1 for some i. Defining
βj and γij as in Lemma 1, for j ∈ {1, . . . , P}, j is a monochromatic column
where for all i, kij 6= 1 if and only if for all i, kij 6= 1 and kij ≡ γij(mod 3)
meaning setting αij = (kij−γij )

3 then 2 ≤ 3αij + γij ≤ pi or, equivalently,⌈
2−γij

3

⌉
≤ αij ≤

⌊
pi−γij

3

⌋
= pi−s

3 −
⌈

γij−s
3

⌉
. For a fixed γij there are

pi−s
3

+
⌊

s−γij

3

⌋
+
⌊

γij−2
3

⌋
+ 1 = pi−s

3
+
⌊

s−γij

3

⌋
+
⌊

γij+1
3

⌋

= pi−s
3 +

⌊
s−((βj+ρis) mod 3)

3

⌋
+
⌊

((βj+ρis) mod 3)+1
3

⌋

solutions for αij and hence for kij. Summing over the three possibilities for βj ,
multiplying the numbers of solutions for each row, and multiplying the sum by
3, we obtain the desired expression for the count of monochromatic columns j
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such that for all i, kij 6= 1.

N ′(A) = 3
2∑

β=0

(
t1∏

i=1

pi − s

3
+
⌊

s − (β mod 3)
3

⌋
+
⌊

(β mod 3) + 1
3

⌋

t2∏

i=t1+1

pi − s

3
+
⌊

s − ((β + s) mod 3)
3

⌋
+
⌊

((β + s) mod 3) + 1
3

⌋

n∏

i=t2+1

pi − s

3
+
⌊

s − ((β + 2s) mod 3)
3

⌋
+
⌊

((β + 2s) mod 3) + 1
3

⌋)

= 3
2∑

β=0

2∏

ρ=0

tρ+1∏

i=tρ+1

(
pi − s

3
+
⌊

s − ((β + ρs) mod 3)
3

⌋
+
⌊

((β + ρs) mod 3) + 1
3

⌋)
.

Then
B(A) = N (A) − N ′(A).

Now, consider an arbitrary monochromatic block of width q consisting of
columns j, ..., j + q − 1. Then for 1 ≤ i ≤ n, 1 ≤ ki,j+q−1 = ki,j + q − 1 ≤ pi

which implies 1 ≤ kij ≤ pi − q + 1. Hence, q cannot exceed p = min(p1, ..., pn).
So, j is the first column of a monochromatic block of width q if and only if j
is the first column of a monochromatic block and kij = pi − q + 1 for some i
if and only if j is a monochromatic column and for some i1, i2, ki1j = 1 and
ki2j = pi − q + 1.

Consider the case when q = p = min(p1, ..., pn). Assume pr = p.

arj =
(

j−kij

pi
+ ρi

)
mod 3

kij ≡ j − arjpi + ρipi(mod 3)
≡ j − arjs + ρis(mod 3)
≡ j − arjs + ρis − ρrs + ρrs(mod 3)
≡ krj − ρrs + ρis(mod 3)
≡ 1 − ρrs + ρis(mod 3)

noting that 1 ≤ krj ≤ pr − p + 1 = 1. Let γij = (1 − ρrs + ρis) mod 3.
Then j is the first column of a monochromatic block of width p if and only if
1 ≤ kij ≤ pi − p + 1 and ki ≡ γij(mod 3) meaning setting αij = (kij−γij )

3 , then

1 ≤ 3αij + γij ≤ pi − p + 1 or, equivalently,
⌈

1−γij

3

⌉
≤ αij ≤

⌊
pi−p+1−γij

3

⌋
=

pi−p
3 +

⌊
1−γij

3

⌋
.

There are

pi−p
3 +

⌊
1−γij

3

⌋
+
⌊

γij−1
3

⌋
+ 1 = pi−p

3 +
⌊

1−γij

3

⌋
+
⌊

γij+2
3

⌋
)

= pi−p
3

+
⌊

1−((1−ρrs+ρis) mod 3)
3

⌋
+
⌊

((1−ρrs+ρis) mod 3)+2
3

⌋
)

solutions for αij and hence for kij. Multiplying the numbers of solutions for
each row, and multiplying the sum by 3, we obtain the desired expression for
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the count of monochromatic blocks of width p.

Bp(3;p1, p2, . . . , pn ; t1, t2) = 3




t1∏

i=1

pi − p

3
+

⌊
1 − ((1 − ρrs) mod 3)

3

⌋
+

⌊
((1 − ρrs) mod 3) + 2

3

⌋

t2∏

i=t1+1

pi − p

3
+

⌊
1 − ((1 − ρrs + s) mod 3)

3

⌋
+

⌊
((1 − ρrs + s) mod 3) + 2

3

⌋

n∏

i=t2+1

pi − p

3
+

⌊
1 − ((1 − ρrs + 2s) mod 3)

3

⌋
+

⌊
((1 − ρrs + 2s) mod 3) + 2

3

⌋


= 3
2∏

ρ=0

t2ρ+1∏

i=t2ρ

pi − s

3
+

⌊
1 − ((1 − ρrs + ρs) mod 3)

3

⌋
+

⌊
((1 − ρrs + ρs) mod 3) + 2

3

⌋
.

Noting that

⌊
1 − ((1 − ρrs + ρs) mod 3)

3

⌋
+
⌊

((1 − ρrs + ρs) mod 3) + 2
3

⌋
=
{

1 for ρr = ρ
0 for ρr 6= ρ

then

Bp(3;p1, p2, . . . , pn ; 0,1,2; t1, t2) =





3

t1∏

i=1

(qi + 1)

t2∏

i=t1+1

(qi)
n∏

i=t2+1

(qi) for pr ∈ {p1, ..., pt1}

3

t1∏

i=1

(qi)

t2∏

i=t1+1

(qi + 1)
n∏

i=t2+1

(qi) for pr ∈ {pt1 , ..., pt2}

3

t1∏

i=1

(qi)

t2∏

i=t1+1

(qi)

n∏

i=t2+1

(qi + 1) for pr ∈ {pt2 , ..., pn}

where qi = pi−p
3 .

5 Counting Monochromatic Columns in m num-

ber of Colors

Next, we discuss the Monochromatic Column problem for arbitrary m when
all the pi are pairwise coprime. The arguments given in proof of Lemma 1
can be suitably adapted in this case. We give the statement without proof.
This improves the result of Jain and Nagpaul [2] as they assume the additional
condition that all rows start with the same color.

Lemma 6 Assume p1, ..., pn are coprime, pi ≡ s(mod m) for 1 ≤ i ≤ n and
fixed s ∈ {1, 2, . . ., m} and t0, t1, . . . , tm satisfy 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tm.
Then

N (m; p1, p2, . . . , pn; 0, 1, 2, . . . , m−1; t1, t2, . . . , tm−1) = m

m−1∑

β=0

m−1∏

ρ=0

tρ+1∏

i=tρ+1

(
pi − s

m
+ Gβ,ρ,s

)

where Gβ,ρ,s =
⌊

s−((β+ρs) mod m)
m

⌋
+
⌊

((β+ρs) mod m)+m−1
m

⌋
.
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Lemma 3 can be also be generalized to a more general case, namely when m
is an arbitrary prime. Again, this generalization is straight forward so we only
give the statement here.

Lemma 7 For a prime m and n ≥ 2 assume p1, . . . , pn are coprime, m | pn,
ρn ∈ {0, 1, . . . , m − 1}, and t0, t1, . . . , t(m−1)m satisfy 0 = t0 ≤ t1 ≤ · · · ≤
t(m−1)m. Then

N (m; p1, ..., pn; 0, 1, 2, . . ., 0, 1, 2, ρn; t1, . . . , t(m−1)m) =
pn

m N (m; p1, ..., pn−1; 0, 1, 2, . . . , 0, 1, 2; t1, . . . , t(m−1)m−1).
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