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Abstract. We provide a new characterization for an injective module to be

Σ-injective.

1. INTRODUCTION

In his paper [4], Carl Faith introduced the concept of Σ-injectivity and defined an
injective module M to be Σ-injective if every direct sum of copies ofM is injective.
It turns out that such an R-module M provides a good deal of information about
the structure of a ring R. For example, R is right noetherian if and only if every
injective right R-module is Σ-injective [5]. If R is an integral domain then the
injective hull E(RR) of R is Σ-injective if and only if R is a right Ore domain [4].
Goursaud-Valette showed that if a ring R admits a faithful Σ-injective module then
R is a right Goldie ring [6].

The following characterizations are well-known for an injective module to be
Σ-injective.

Theorem 1. (Cailleau [3], Faith [4]) For an injective module MR, the following
are equivalent:

(1) M is Σ-injective.
(2) M is countably Σ-injective.
(3) R satisfies ACC on the the set of right ideals I of R that are annihilators of

subsets of M .
(4) M is a direct sum of indecomposable Σ-injective modules.

The purpose of this paper is to provide the following new characterization for
an injective module to be Σ-injective.

Theorem 2. Let MR be an injective module. Then the following statements are
equivalent:

(a) M is Σ-injective.
(b) Every essential extension of M (ℵ0) is a direct sum of injective modules.
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2. PRELIMINARIES

All rings considered in this paper have unity and all modules are right unital. We
denote by E(M), the injective hull ofM . We shall write N ⊆e M whenever N is an
essential submodule of M . A submodule L of M is called an essential closure of a
submodule N of M if it is a maximal essential extension of N in M . A submodule
K of M is called a complement if there exists a submodule U of M such that K
is maximal with respect to the property that K ∩ U = 0. Given a cardinal α and
a module N , we denote by N (α) the direct sum of α copies of the module N . A
module N is said to be Σ-injective provided that N (α) is injective for any cardinal
α. We say that the Goldie dimension G dimU (N) of N with respect to U is finite,
written as GdimU (N) < ∞, if N does not contain an infinite independent family
of nonzero submodules which are isomorphic to submodules of U . A module N is

said to be q.f.d. relative to U if for any factor module N of N , GdimU (N) <∞.
We say R is right q.f.d. relative to U if RR is q.f.d. relative to U .

We first start with a key lemma.

Lemma 3. LetM be an injective module and suppose that every essential extension
of M (ℵ0) is a direct sum of injective modules. Then

(a) Given a direct sum G = ⊕i∈NMi, Mi
∼=M, and nonzero injective submodules

Vi of Mi, there exists an infinite subset J ⊆ N and nonzero injective submodules
V

′

j ⊆ Vj , j ∈ J , such that ⊕j∈J V
′

j is injective.
In particular, if {Vi : i ∈ N} is an independent family of uniform injective

submodules of M then ⊕j∈JVj is injective for some infinite subset J ⊆ N.
(b) R is right q.f.d. relative to M .

Proof. (a) Set E = E(G). Since Vi is an injective submodule of Mi, Mi = Vi ⊕M
′

i

for some submodule M
′

i ⊆ Mi. Therefore, G = (⊕i∈NVi) ⊕ (⊕i∈NM
′

i ). Let H

and H
′

be essential closures of ⊕i∈NVi and ⊕i∈NM
′

i in E, respectively. Clearly,

E = H ⊕H
′

. If ⊕i∈NVi = H, then there is nothing to prove.
Consider now the case when ⊕i∈NVi 
= H. Pick x ∈ H\ ⊕i∈N Vi. Let Q be

a submodule of H maximal with respect to the properties that ⊕i∈NVi ⊆ Q and
x /∈ Q. Set P = Q ⊕ H

′

and note that E/P = (H⊕ H
′

)/(Q ⊕H
′

) ∼= H/Q is a
subdirectly irreducible module.

Now, as G ⊆e E and G ⊆ P ⊂ E, we have G ⊆e P . Hence, by our assumption,
P = ⊕k∈KWk, where each Wk is a nonzero injective module. Since P ⊂e E and
P 
= E, P is not injective and so |K| =∞.

We claim that for any finite subset L of K and for any positive integer n there
exists i > n such that Vi ∩ (⊕k∈LWk) is not essential in Vi.

Suppose the above claim is not true. Then there exists a finite subset L ⊆ K
and an integer n ≥ 1 such that Vi ∩ (⊕k∈LWk) ⊂e Vi for all i > n. Let A be an
essential closure of ⊕i>n(Vi ∩ (⊕k∈LWk)) in ⊕k∈LWk which is injective and so A is
also injective.

We have ⊕i>n(Vi∩⊕k∈LWk) ⊂e A ⊂ ⊕k∈LWk. Setting B = V1⊕V2⊕...⊕Vn⊕A,

we have V1 ⊕ V2 ⊕ ... ⊕ Vn ⊕i>n (Vi ∩ ⊕k∈LWk) ⊂e B ⊂ E = H ⊕ H
′

. Now,
((⊕i≤nVi)⊕i>n (Vi ∩ (⊕k∈LWk))) ∩H ⊂e B ∩H ⊂ H, which gives (⊕i≤nVi)⊕i>n
(Vi ∩ (⊕k∈LWk)) ⊂e B ∩ H ⊂ H. Since Vi ∩ (⊕k∈LWk) ⊂e Vi for all i > n, we
have (⊕i≤nVi)⊕i>n (Vi ∩ (⊕k∈LWk)) ⊂e ⊕i∈NVi ⊂e H. Thus B ∩H is an essential
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submodule of H. Furthermore, as (⊕i≤nVi)⊕i>n (Vi ∩ (⊕k∈LWk)) ⊂e B, we have
B ∩H ⊂e B.

Since B∩H ⊂e B, we have B∩H
′

= 0. As B∩H ⊂e H, we have (B∩H)⊕H
′

⊂e
H⊕H

′

= E. Therefore, B⊕H
′

⊂e E. But since both B andH
′

are injective, B⊕H
′

is injective. Thus E = B ⊕H
′

= (V1⊕ V2 ⊕ ...⊕ Vn⊕A)⊕H
′

⊆ Q+P +H
′

= P ,
a contradiction because P ⊂ E and P 
= E.

This proves that for any finite subset L of K and for any positive integer n there
exists i > n such that Vi ∩ (⊕k∈LWk) is not essential in Vi.

We now proceed by induction to construct a sequence of submodules {W
′

kj
:

j = 1, 2, ..., n, ...} such that each W
′

kj
is a nonzero injective submodule of Wkj

isomorphic to a submodule V
′

ij
of Vij , where k1, k2, ..., kn, ... are distinct elements

of K and 1 ≤ i1 < i2 < ... < in < ...
Let i1 ≥ 1 be arbitrary. Now Vi1 ⊂ ⊕k∈KWk implies, there exists a nonzero

submodule V
′

i1
of Vi1 such that V

′

i1
is isomorphic to a submodule W

′

k1
of Wk1 for

some k1 ∈ K. Clearly, we may choose V
′

i1
to be an injective submodule of Vi1 .

For n ≥ 1, assume that we have a sequence {W
′

kj
: j = 1, 2, ..., n} with the

above stated property. By the fact proved above, there exists in+1 > in such that
X = Vin+1 ∩ (⊕k∈K1

Wk) is not essential in Vin+1 , where K1 = {k1, k2, ..., kn}. Let

X
′

be a complement of X in Vin+1 . Then X
′


= 0 and X
′

∩ (⊕k∈K1Wk) = X
′

∩X =

0. We have X
′

⊂ Vin+1 ⊂ (⊕k∈K1
Wk) ⊕ (⊕k∈K2

Wk), where K2 = K\K1. Let
π : (⊕k∈K1

Wk)⊕ (⊕k∈K2Wk) −→ ⊕k∈K2
Wk be the projection. Then ker(π|X′ ) =

X
′

∩ (⊕k∈K1Wk) = 0. Therefore, X
′

is isomorphic to some submodule of ⊕k∈K2
Wk.

So, X
′

contains a nonzero submodule which is isomorphic to a submodule F of
Wkn+1 for some kn+1 ∈ K2. Denote by W

′

kn+1
an essential closure of F in Wkn+1 .

Since F is isomorphic to a submodule of the injective module Vin+1 , we conclude

that W
′

kn+1
is isomorphic to a submodule of Vin+1 as well. Obviously the family

{W
′

kj
: j = 1, 2, ..., n + 1} satisfies the required property. This completes the

induction argument.
Now set K

′

= {k1, k2, ..., kn, ...}. Choose disjoint subsets K
′

1 and K
′

2 of K

such that K = K
′

1 ∪ K
′

2 and K
′

∩K
′

1 = {k1, k3, ..., k2n+1, ...}. Clearly, K
′

∩K
′

2 =
{k2, k4, ..., k2n, ...}.

Now we claim that either ⊕
k∈K

′

1

Wk is injective or ⊕
k∈K

′

2

Wk is injective.

Set V = ⊕
k∈K

′

1

Wk and W = ⊕
k∈K

′

2

Wk. We have P = V ⊕ W . Let V̂ and

Ŵ be essential closures of V and W respectively in E. Clearly, E = V̂ ⊕ Ŵ .

Therefore, E/P = (V̂ ⊕ Ŵ )/(V ⊕W ) ∼= (V̂ /V )× (Ŵ/W ). Since E/P is shown to

be subdirectly irreducible in the beginning of the proof, we have either V = V̂ or

W = Ŵ . This proves our claim.
Thus, we may assume, without loss of generality, that the module ⊕

k∈K
′

1

Wk

is injective. Since ⊕∞n=0W
′

k2n+1
is a direct summand of ⊕

k∈K
′

1

Wk, we get that

⊕∞n=0W
′

k2n+1
is injective. Recalling that ⊕∞n=0V

′

i2n+1
∼= ⊕∞n=0W

′

k2n+1
, we conclude

that ⊕∞n=0V
′

i2n+1
is an injective module. This completes the proof.

(b) Assume to the contrary that R is not right q.f.d. relative to M . Then there
exists a cyclic right R-module C with an infinite independent family {Ci : i ∈ N}
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of nonzero submodules of C such that each Ci is isomorphic to a submodule Bi
of M. Set Di equal to an essential closure of Bi in M . Then {Di : i ∈ N} is
a family of injective submodules of M. Therefore by (a), there exists an infinite

subset J ⊆N and nonzero injective submodulesD
′

j ⊆ Dj , j ∈ J , such that ⊕j∈JD
′

j

is injective. Set B
′

j = Bj ∩ D
′

j , j ∈ J and note that B
′

j 
= 0. Let C
′

j be the

inverse image of B
′

j under the isomorphism Cj −→ Bj stated above. This induces

canonical isomorphism between ⊕j∈JC
′

j and ⊕j∈JB
′

j , say θ. Let σ be the inclusion

map ⊕j∈JB
′

j −→ ⊕j∈JD
′

j . Then, since ⊕j∈JD
′

j is injective, the map f = σθ :

⊕j∈JC
′

j −→ ⊕j∈JD
′

j can be extended to a homomorphism f̂ : C −→ ⊕j∈JD
′

j .

Because C is cyclic, there exists a finite subset K ⊆ J such that f̂(C) ⊆ ⊕k∈KD
′

k.

Now, f̂(C
′

j) = f(C
′

j) = σθ(C
′

j) = σ(B
′

j) = B
′

j . But f̂(C
′

j) ⊆ f̂(C) ∩D
′

j = 0 for all
j /∈ K, a contradiction.

Therefore, R is right q.f.d. relative to M.

3. PROOF OF THEOREM 2

Proof. (b) =⇒ (a). Suppose that M (λ) is not injective for some infinite cardinal λ.
Set E = E(M (λ)), pick x ∈ E\M (λ) and let L = xR. By Lemma 3 (b), R is right
q.f.d. relative toM . From this it follows that every nonzero cyclic and hence every
nonzero submodule ofM contains a uniform submodule. Now, consider the set S of
independent families (Mk)k∈K of uniform injective modules 0 
=Mk ⊆M . Suppose
S is partially ordered by (Mk)k∈K ≤ (Nl)l∈L if and only if K ⊆ L and Mk = Nk
for k ∈ K. By Zorn’s lemma we get a maximal independent family (Mi)i∈I of
uniform injective submodules. Clearly ⊕i∈IMi ⊆e M , because otherwise we will
get a contradiction to the maximality of this independent family of submodules.
This yields that we have an independent family {Wi : i ∈ I} of uniform injective
submodules of M(λ) such that each Wi is isomorphic to a submodule of M and
⊕i∈IWi ⊆e M (λ).

Now we proceed to show that there is a sequence of pairwise distinct elements
i1, i2, ... in I and an independent family of direct summands V1, V2, ... of E such that
Vj ∼=Wij with Vj⊕(⊕i∈IjWi) = ⊕i∈Ij−1Wi, E = Ej⊕(⊕

j
k=1Vk) and πj−1(L)∩Vj 
=

0 for all j ∈ N, where I0 = I , Ij = Ij−1\{ij} for ij ∈ I, E0 = E, Ej is an essential
closure of ⊕i∈IjWi in Ej−1, π0 = idE, and πj is the projection of E onto Ej along
V1 ⊕ ...⊕ Vj .

Since ⊕i∈IWi ⊆e M
(λ) ⊂e E and L is a nonzero submodule of E, we have

L∩ (⊕i∈IWi) 
= 0. So L∩ (⊕i∈IWi) contains a nonzero cyclic uniform submodule,
say, C1. This implies, there exists a finite subset K1 ⊂ I such that C1 ⊆ ⊕i∈K1

Wi.
Let V1 be an essential closure of C1 in ⊕i∈K1

Wi. Since ⊕i∈K1
Wi is injective, V1 is

injective. So, ⊕i∈K1Wi = V1 ⊕D1 for some submodule D1 of ⊕i∈K1Wi. Since V1
is injective, it has the exchange property. Therefore, ⊕i∈K1Wi = V1 ⊕ (⊕i∈K1

W
′

i )

for some submodules W
′

i of Wi. Since W
′

i are injective and each Wi is indecom-

posable, either W
′

i = 0 or W
′

i = Wi. We recall that V1 is uniform because it is
the closure of uniform module C1. Comparing the Goldie dimension on each side
of ⊕i∈K1

Wi = V1 ⊕ (⊕i∈K1W
′

i ), we get that there exists exactly one index, say

i1 ∈ K1 such that W
′

i1
= 0, and for all i(
= i1) ∈ K1, W

′

i = Wi. So, ⊕i∈K1Wi =
V1⊕ (⊕i∈K1\{i1}Wi). This yields V1 ∼= (⊕i∈K1

Wi)/(⊕i∈K1\{i1}Wi) ∼=Wi1 . Also, we
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have V1⊕ (⊕i∈K1\{i1}Wi)⊕ (⊕i∈I\K1
Wi) = (⊕i∈K1

Wi)⊕ (⊕i∈I\K1
Wi). This yields

V1⊕(⊕i∈I1Wi) = ⊕i∈IWi. Taking injective hulls of both sides, we get E1⊕V1 = E.
Clearly, L ∩ V1 
= 0 as it contains C1.

For n ≥ 1, assume that we have a sequence {Vj}, 1 ≤ j ≤ n, of submodules of E
with the above stated properties. Since x /∈M (λ), L = xR � ⊕ni=1Vi = ker(πn), for
if x ∈ ⊕ni=1Vi then V1 ⊕ ...⊕ Vn ⊕ (⊕i∈InWi) = ⊕i∈I0Wi implies that x belongs to
⊕i∈I0Wi and hence to M(λ), a contradiction. So πn(L) 
= 0. Now ⊕i∈InWi ⊂e En
and because πn : E −→ En, we have πn(L)∩(⊕i∈InWi) 
= 0. So πn(L)∩(⊕i∈InWi)
contains a nonzero cyclic uniform submodule, say, Cn+1. This implies, there exists
a finite subset Kn+1 ⊆ In such that Cn+1 ⊆ ⊕i∈Kn+1Wi. Let Vn+1 be an essential
closure of Cn+1 in ⊕i∈Kn+1

Wi. Since ⊕i∈Kn+1
Wi is injective, Vn+1 is injective.

So, ⊕i∈Kn+1
Wi = Vn+1 ⊕ Dn+1 for some submodule Dn+1 of ⊕i∈Kn+1

Wi. Since
Vn+1 is injective, it has the exchange property. Therefore, ⊕i∈Kn+1Wi = Vn+1 ⊕

(⊕i∈Kn+1W
′

i ) for some submodules W
′

i of Wi. Since W
′

i are injective and each

Wi is indecomposable, either W
′

i = 0 or W
′

i = Wi. Again note that Vn+1 is
uniform because it is the closure of the uniform module Cn+1. Comparing the

Goldie dimension on each side of ⊕i∈Kn+1Wi = Vn+1 ⊕ (⊕i∈Kn+1
W

′

i ), we get that

there exists exactly one index, say in+1 ∈ Kn+1 such that W
′

in+1
= 0, and for all

i(
= in+1) ∈ Kn+1, W
′

i = Wi. So, ⊕i∈Kn+1
Wi = Vn+1 ⊕ (⊕i∈Kn+1\{in+1}Wi). This

yields Vn+1
∼= (⊕i∈Kn+1Wi)/(⊕i∈Kn+1\{in+1}Wi) ∼= Win+1 . Also, we get Vn+1 ⊕

(⊕i∈Kn+1\{in+1}Wi) ⊕ (⊕i∈In\Kn+1
Wi) = (⊕i∈Kn+1

Wi) ⊕ (⊕i∈In\Kn+1
Wi). This

yields Vn+1⊕ (⊕i∈In+1Wi) = ⊕i∈InWi. Taking injective hulls of both sides, we get

En+1⊕Vn+1 = En. Thus, we have E = En+1⊕(⊕
n+1
k=1Vk). Note that πn(L)∩Vn+1 
=

0 as it contains Cn+1. Thus, we have obtained a sequence of submodules {Vj},
j = 1, 2, ..., with the required properties. This completes the induction argument.

Now we claim that there exists a properly ascending chain N0 ⊂ N1 ⊂ ... ⊂
Nj ⊂ ... of submodules of L such that N0 = 0 and E(Nj/Nj−1) ∼= Vj for all j ≥ 1.

Set Nj = L ∩ (V1 ⊕ ... ⊕ Vj). Clearly, N0 ⊆ N1 ⊆ ... ⊆ Nj ⊆ ... Since
Nj ∩ ker(πj−1) = Nj−1, we have Nj/Nj−1 ∼= πj−1(Nj). If l ∈ Nj , then l =
v1 + ...+ vj with vi ∈ Vi, so πj−1(l) = vj and vj ∈ πj−1(L) ∩ Vj . This shows that
πj−1(Nj) ⊆ πj−1(L)∩ Vj . Conversely, if vj ∈ πj−1(L)∩ Vj , then vj = πj−1(l) with
l ∈ L∩(V1⊕...⊕Vj) = Nj , so vj ∈ πj−1(Nj). Therefore πj−1(Nj) = πj−1(L)∩Vj 
=
0. Because πj−1(Nj−1) = 0 and πj−1(Nj) 
= 0, it follows that Nj−1 � Nj . Since
Nj/Nj−1 ∼= πj−1(Nj) = πj−1(L) ∩ Vj , we have E(Nj/Nj−1) ∼= Vj .

Since {Vj : j ∈ N}, is an independent family of uniform injective modules isomor-
phic to submodules ofM , by the above lemma, there exists an infinite subset J ⊆ N
such that ⊕j∈JVj and hence ⊕j∈JE(Nj/Nj−1) is injective. Set N = ∪j∈JNj .
Given j ∈ J , the canonical map Nj −→ Nj/Nj−1 ⊂ E(Nj/Nj−1) induces a
map αj : N −→ E(Nj/Nj−1). Let α : N −→ ⊕j∈JE(Nj/Nj−1) be defined by
α(x) = {αj(x)}j∈J for all x ∈ N . Since ⊕j∈JE(Nj/Nj−1) is injective, we may
extend α to α∗ : L −→ ⊕j∈JE(Nj/Nj−1). As L is finitely generated, there exists
a finite subset K ⊆ J such that α∗(L) ⊆ ⊕k∈KE(Nk/Nk−1). For j ∈ J \K and
x ∈ Nj we have 0 = αj(x) = x+Nj−1, showing that Nj−1 = Nj , a contradiction.

Therefore, M(λ) is injective for any cardinal λ and hence M is Σ-injective.
(a) =⇒ (b) is obvious.
This completes the proof of Theorem 2.
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As a consequence of Theorem 2, we have the following characterization for a
right noetherian ring.

Theorem 4. Let R be a ring. Then the following are equivalent:
(i) R is right noetherian.
(ii) For each injective module MR, every essential extension of M(ℵ0) is a direct

sum of injective modules.

Proof. (i)⇒ (ii) is obvious. (ii)⇒ (i) follows from Theorem 2 and by Faith-Walker
[5] that a ring R is right noetherian if and only if every injective right R-module is
Σ-injective.

Remark 5. The above result generalizes a result of Beidar-Ke [2] which states that
a ring R is right noetherian if and only if every essential extension of a direct sum
of injective right R-modules is again a direct sum of injective right R-modules. Note
that [2] indeed generalizes a result of Bass [1] that a ring is right noetherian if and
only if every direct sum of injective modules is injective.

Acknowledgment. We would like to thank the referees for several helpful
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