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Abstract. We establish commutativity theorems for certain classes of rings
in which every invertible element is central, or, more generally, in which all
invertible elements commute with one another. We prove that if R is a semiex-

change ring (i.e. its factor ring modulo its Jacobson radical is an exchange
ring) with all invertible elements central, then R is commutative. We also
prove that if R is a semiexchange ring in which all invertible elements com-
mute with one another, and R has no factor ring with two elements, then R

is commutative. We offer some examples of noncommutative rings in which
all invertible elements commute with one another, or are central. We close
with a list of problems for further research.

Mathematics Subject Classification (2000). Primary 16U60, 16U70; Secondary
16L30.

1. Introduction

We say that an associative unital ring R is unit-central if U(R) ⊆ Z(R), i.e. if
every invertible element of the ring lies in the center. In various natural situations
the unit-central condition implies full commutativity.

It is also of interest to weaken the unit-central condition and consider rings
R for which U(R) is an abelian group. We will refer to such a ring R as having
commuting units. Rings with commuting units have also been investigated by a
number of authors (e.g. see [7], [12], [21], [22]). For a ring that is additively gener-
ated by its units (cf. [17], [18], [19], [26], [28]), having commuting units is obviously
equivalent to commutativity.

Our main focus in this note will be on unit-central rings and rings with
commuting units. A still wider class consists of those rings in which any two
nilpotent elements commute with one another. This property proved instrumental
in the study of prime rings in [5]. We will consider this condition in Theorem 2.8
below.
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We will denote the Jacobson radical of a ring R by rad(R), the set of nilpo-
tent elements by N(R), and the right annihilator of an element a in R by annR

r
(a).

For any other notation not defined here, we refer the reader to [20].
We record the following construction technique for the classes of rings under

consideration.

Proposition 1.1. Let S be a ring, let M be an (S, S)-bimodule, and define R =
S⊕M as an additive group, with multiplication in R defined by (s1, m1)(s2, m2) =
(s1s2, s1m2 + m1s2).

(i) R is unit-central if and only if S is unit-central and sm = ms for all s ∈ S
and m ∈ M.

(ii) R has commuting units if and only if S has commuting units and sm = ms
for all s ∈ U(S) and m ∈ M.

Proof. Straightforward. �

2. Commutativity theorems

We begin with a basic but useful lemma. Recall that a ring is said to be abelian if
every idempotent element is central.

Lemma 2.1. Let R be a ring. Then:

(i) If R is unit-central, then N(R) ∪ rad(R) ⊆ Z(R).
(ii) If R has commuting units, then for all a, b ∈ N(R)∪ rad(R)∪U(R) we have

ab = ba.
(iii) If R is unit-central, then R is abelian.
(iv) If for all a, b ∈ N(R) we have ab = ba, then R is Dedekind-finite.

Proof. Statements (i) and (ii) are straightforward. If e ∈ R is an idempotent in a
unit-central ring, then (i) implies eR(1− e) = {0}, and (iii) follows. A Dedekind-
infinite ring contains an infinite set of matrix units, whence (iv). �

Obviously neither the property of having commuting units nor the unit-
central condition is Morita invariant; however, they do pass to corner rings:

Lemma 2.2. Let R be a ring and e ∈ R an idempotent. If R is unit-central (resp.
a ring with commuting units), then the corner ring eRe is unit-central (resp. a
ring with commuting units).

Proof. Suppose R is unit-central, with ere ∈ U(eRe) and ese ∈ eRe. Then ere+
(1 − e) is contained in U(R), so it commutes with ese, and hence ere and ese
commute.

The proof for the “commuting units” case is analogous. �

Recall that a ring R is called an exchange ring if the module RR satisfies P.
Crawley and B. Jónsson’s exchange property: given a set I, whenever

A = M ⊕ N =
⊕

i∈I

Ai with M ∼= R
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in the category of right R-modules, there exist submodules A′

i
⊆ Ai such that

A = M ⊕

(

⊕

i∈I

A′

i

)

.

R. W. Warfield Jr. showed in [29, Corollary 2] that this property is left-right sym-
metric. Every ring R that is semiregular (i.e. R/rad(R) is von Neumann regular
and idempotents of R/rad(R) lift to R) is an exchange ring. Also, every clean
ring (i.e. ring in which every element is the sum of a unit and an idempotent) is
an exchange ring. For example, the endomorphism ring of an continuous module
is both semiregular and clean (for the latter, see [9]). By [4, Proposition 2.6], every
strongly π-regular ring is clean; by [27, Example 2.3], every π-regular ring is an ex-
change ring. In addition to semiregular and clean rings, the class of exchange rings
includes all C∗-algebras of real rank zero and Gromov translation rings of discrete
trees over von Neumann regular rings (see [2, Theorem 7.2] and [3, Theorem 2.7]).

Exchange rings can be characterized as those rings for which every pair of
comaximal right ideals contain a complementary pair of idempotents, i.e. R is an
exchange ring if and only if for each element a ∈ R there exists an idempotent e ∈
R such that e ∈ aR and 1−e ∈ (1−a)R. This characterization was independently
discovered by K. R. Goodearl and W. K. Nicholson (see [14, p. 167] and [23,
Proposition 1.1 and Theorem 2.1]), and it is very useful in practice. For example,
the proof by P. Ara, K. C. O’Meara, and F. Perera that Gromov translation rings
of discrete trees over von Neumann regular rings are exchange rings in [3] relied
crucially on Goodearl and Nicholson’s characterization.

A ring R is said to be a semiexchange ring if the factor ring R/rad(R) is
an exchange ring. This common generalization of exchange rings and semilocal
rings arises naturally: according to [23, Corollary 2.4], a ring is an exchange ring
if and only if it is a semiexchange ring and idempotents lift modulo the Jacobson
radical. The (apparently rather deep) open problem of the left-right symmetry of
the quasi-duo condition has an affirmative answer for the class of semiexchange
rings (see [11, Theorem 4.6]). Basic properties of semiexchange rings are developed
in [10]. Of course, a semiexchange ring need not be either semilocal or an exchange
ring, as can be seen by taking a direct product of a semilocal ring and an exchange
ring, or an infinite direct product of semilocal rings.

A ring with commuting units can be both semilocal and an exchange ring
without being commutative. On the other hand, a unit-central ring that is either
semilocal or an exchange ring must be commutative, by the following theorem.

Theorem 2.3. Every unit-central semiexchange ring is commutative.

Proof. Let R be a unit-central semiexchange ring. To prove that R is commuta-
tive, by [20, p. 200, Ex. 12.8B] it suffices to show that x − x2 ∈ Z(R) for every
x ∈ R.

Fix x ∈ R. The exchange ring R = R/rad(R) is unit-central, therefore
abelian, and it is well known that abelian exchange rings are clean [23, Proposi-
tion 1.8(2)]. So x = e + u for some e, u ∈ R such that e is an idempotent and u
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a unit of R. Then 1 − 2e ∈ U(R), so 1 − 2e ∈ U(R) ⊆ Z(R), hence 2e ∈ Z(R).
As u ∈ U(R) ⊆ Z(R), we have 2eu ∈ Z(R) and u − u2 ∈ Z(R). Moreover,
e− e2 ∈ rad(R) ⊆ Z(R). Consequently, x−x2 = (e− e2)− 2eu+ (u−u2) ∈ Z(R),
as required. �

Remark 2.4. The classical commutativity theorems of Jacobson, Herstein, and
Kaplansky made heavy use of subdirect product representations. If R is a unit-
central ring, and R/rad(R) is a finite subdirect product of simple artinian rings,
then R is semilocal, and by Theorem 2.3, R must be commutative. One might
be tempted to try to extend this conclusion to the case where R/rad(R) is a
subdirect product of an arbitrary set of simple artinian rings. Unfortunately, this
generalization fails. If k is an infinite field, and {xi : i ∈ I} is an infinite set of
noncommuting indeterminates, then the free algebra R = k〈{xi : i ∈ I}〉 is a
noncommutative unit-central ring with rad(R) = (0), and by [1, Corollary 3], R
can be represented as a subdirect product of simple artinian rings.

Example 2.5. Let

R =

(

F2 V
0 F2

)

where V is any nonzero F2-vector space. Then R is a noncommutative semipri-
mary ring with commuting units. Thus, in Lemma 2.1(iii) and Theorem 2.3 the
unit-central hypothesis cannot be weakened to “commuting units.”

If, however, we assume that R has no factor ring isomorphic to F2, then
Theorem 2.3 can be extended to rings with commuting units. To prove this, we will
make use of the following theorem, which occurred (with different terminology) as
[21, Theorem 2.2]. (The “left suitable” condition in [21, Theorem 2.2] is equivalent
to the ring being an exchange ring: see [21, Lemma 1.2] or [23, Theorem 2.1].)

Theorem 2.6 (Nicholson, Springer). A semiprime exchange ring with commuting
units is commutative.

The following theorem strengthens a result of J. Han, [16, Theorem 2.9].
We note that Nicholson has a complementary result for semiperfect rings, [22,
Corollary 1(1)].

Theorem 2.7. Let R be a semiexchange ring with commuting units. If R has no
factor ring isomorphic to F2, then every element of R is a sum of two units, and
consequently R is commutative.

Proof. Let R = R/rad(R). As R is a semiprimitive exchange ring with commuting
units, Theorem 2.6 implies R is commutative. In a commutative exchange ring
with no factor ring isomorphic to F2, every element is the sum of two units. (See
[6, Theorem 3]; the idea was already implicit in [13, Theorem 2].) Thus, every
element of R is the sum of two units, whence every element of R is the sum of
two units. Since R has commuting units, it is commutative. �
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An element a of a ring R is a von Neumann regular element if there exists
some b ∈ R such that a = aba.

Theorem 2.8. Let R be a ring with the property that for all a, b ∈ N(R) we have
ab = ba. (In particular, any ring with commuting units has this property.) Then
R does not contain any nonzero nilpotent von Neumann regular element.

Proof. Assume the contrary, that there exists some a ∈ R such that a = aba for
some b ∈ R, and an = 0 6= an−1 for some integer n > 2. Put e = ab.

The nilpotent elements a and ea(1 − e) commute, hence aea(1 − e) = 0.
From a2(1 − e) = 0 we obtain a2 = a2e = a3b, whence a2 = am+2bm for every
m ∈ N. Therefore a2 = 0, which implies a = ea(1 − e). Hence

a =
(

ea(1 − e)
)

b
(

ea(1 − e)
)

=
(

ea(1 − e)
)(

(1 − e)be
)(

ea(1 − e)
)

=
(

ea(1 − e)
)(

ea(1 − e)
)(

(1 − e)be
)

= 0,

a contradiction. �

Using Theorem 2.8, we can recover the following special case of Theorem 2.6.

Corollary 2.9 (Nicholson, Springer). Any von Neumann regular ring with commut-
ing units is commutative.

Proof. Let R be a von Neumann regular ring with commuting units. By Theo-
rem 2.8, R is reduced and von Neumann regular, i.e. strongly regular. In a strongly
regular ring every element is the product of a unit and a central idempotent. Hence
R is commutative. �

Remark 2.10. It follows from Theorem 2.3 that any unit-central artinian ring is
commutative. A unit-central noetherian ring, however, need not be commutative.
For instance, the Weyl algebras over a field are noncommutative unit-central noe-
therian rings. For another example of this sort, let A = k[t1, t2, . . . , tn] where k is
a field and the ti’s are commuting indeterminates, and let σ be any nonidentity
k-linear automorphism of A. Then the skew polynomial ring R = A[x; σ] is a
noncommutative unit-central noetherian ring.

We note in closing that commutativity theorems complementary to those in
this section can be found in [15, §5].

3. Open problems

A ring R is called right duo if each right ideal of R is two-sided. We ask the
following question.

Question 3.1. Is every unit-central right duo ring commutative?
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Following Nicholson and M. F. Yousif in [24], we call a ring R right prin-
cipally injective, or right P-injective, if for every a ∈ R, every right R-module
homomorphism aR → R extends to a right R-module homomorphism R → R.
Since a right self-injective ring is an exchange ring, we know that every unit-central
right self-injective ring is commutative. This suggests the following question.

Question 3.2. Is every unit-central right principally-injective ring commutative?

Nicholson and E. Sánchez-Campos [25] called an element a of a ring R a
right morphic element if R/aR ∼= annR

r
(a) as right R-modules. A ring R is called

a right morphic ring if every element of R is a right morphic element. Clearly
every unit and idempotent in a ring is morphic. We ask the following question.

Question 3.3. Is every unit-central right morphic ring commutative?

A ring R is said to have stable range 1 if for all a, b ∈ R such that aR+bR =
R, there exists y ∈ R such that a + by is a unit. As every semilocal ring has
stable range 1, and Theorem 2.3 shows that every unit-central semilocal ring is
commutative, we ask the following.

Question 3.4. Is every unit-central ring with stable range 1 commutative?
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