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A classical result of Zelinsky states that every linear transformation on a vector space
V , except when V is one-dimensional over Z2, is a sum of two invertible linear transfor-
mations. We extend this result to any right self-injective ring R by proving that every
element of R is a sum of two units if no factor ring of R is isomorphic to Z2.
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1. Introduction

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations
of a vector space V over a division ring D is a sum of two units unless dim V =
1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s
result generated quite a bit of interest in regular rings that have the property that
every element is a sum of (two) units. Clearly, a ring R, having Z2 as a factor
ring, cannot have every element as a sum of two units. In 1958 Skornyakov [12,
Problem 31, p. 167] asked: Is every element of a regular ring (which does not have
Z2 as a factor ring) a sum of units? This question of Skornyakov was settled by
Bergman (see [7]) in negative who gave an example of a directly-finite, regular ring
with 2 invertible, in which not all elements are the sum of units. It is easy to see that
if R is a unit regular ring with 2 invertible, then every element can be written as a
sum of two units (see [3]). A number of authors have also considered arbitrary rings
in which elements are the sum of units. For instance, Henriksen in [8, Theorem 3]
proved that, an arbitrary ring R, every element of Mn(R), n > 1, is a sum of three
units. Henriksen also gave an example of a ring R such that not every element of
M2(R) is a sum of two units [8, Example 10].

281



April 16, 2007 19:47 WSPC/171-JAA 00218

282 D. Khurana & A. K. Srivastava

Since EndD(V ) is a right self-injective ring, the other natural question which
arises from Zelinsky’s result is the following: Which (regular)a right self-injective
rings have the property that every element is a sum of two units? In this direction
Utumi [13, Theorem 2] proved that in a regular right self-injective ring having no
ideals with index of nilpotence 1, every element is a sum of units. In [11, Proposi-
tion 11] Raphael proved that if in a regular right self-injective ring R every idem-
potent is a sum of two units, then every element can be written as a sum of even
number of units. In [2] it was proved that in a right self-injective ring with 2 invert-
ible, every element can be written as a sum of a unit and a square root of 1.
Recently, Vámos in [15, Theorem 21] proved that every element of a regular right
self-injective ring is a sum of two units if the ring has no non-zero corner ring which
is Boolean.b In this paper, we prove that every element of a right self-injective ring
is a sum of two units if and only if it has no factor ring isomorphic to Z2. We
extend this result to endomorphism rings of right quasi-continuous modules with
finite exchange property (Theorem 3). Some consequences of our results are also
given. For instance, it is shown that every element of the endomorphism ring of a
flat cotorsion module is a sum of two units if no factor ring of the endomorphism
ring is isomorphic to Z2. In Proposition 7 we give an interesting application of our
result for group rings. The proof of our main result uses Type theory of regular
right self-injective rings introduced by Kaplansky [9].

2. Definitions and Notations

All rings considered in this paper have unity and all modules are right unital. A
ring R is called right self-injective if every R-homomorphism from a right ideal of R

into R can be extended to an endomorphism of R. A ring R is called directly finite
if xy = 1 implies yx = 1, for all x, y ∈ R. A ring R is called von-Neumann regular
if every principal right (left) ideal of R is generated by an idempotent. A regular
ring is called abelian if all its idempotents are central. An idempotent e in a regular
ring R is called abelian idempotent if the ring eRe is abelian. An idempotent e in a
regular right self-injective ring is called faithful idempotent if 0 is the only central
idempotent orthogonal to e, that is, ef = 0 implies f = 0, where f is a central
idempotent. A regular right self-injective ring is said to be of Type I provided it
contains a faithful abelian idempotent. A regular right self-injective ring R is said
to be of Type II provided R contains a faithful directly finite idempotent but R

contains no non-zero abelian idempotents. A regular right self-injective ring is of
Type III if it contains no non-zero directly finite idempotents. A regular right self-
injective ring is of (i) Type If if R is of Type I and is directly finite, (ii) Type I∞
if R is of Type I and is purely infinite i.e., RR

∼= (R⊕R)R, (iii) Type IIf if R is of
Type II and is directly finite, (iv) Type II∞ if R is of Type II and is purely infinite

aWe are writing “regular” in brackets because for a right self-injective ring R, R/J(R) is regular
right self-injective, and clearly an element is a sum of k units in R if and only if it is so in R/J(R).
bThis condition is weaker than 1/2 ∈ R.
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(see [5, pp. 111–115]). N ⊆e M (N ⊆⊕ M) will denote that N is an essential
submodule (summand) of M .

For additional notations and terminology we refer the reader to [5] and [10].

3. Main Results

The following result characterizes the right self-injective rings with the property
that every element is a sum of two units.

Theorem 1. For a right self-injective ring R, the following conditions are equiva-
lent:

(1) Every element of R is a sum of two units.
(2) Identity of R is a sum of two units.
(3) R has no factor ring isomorphic to Z2.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
Now, we proceed to show (3) ⇒ (1).
By [14] we know that R/J(R) is a regular, right self-injective ring. Since every

element of R is a sum of two units if and only if every element R/J(R) is a sum of two
units, we may assume that R is regular. By [5, Proposition 10.21], R ∼= S×T , where
S is purely infinite and T is directly finite. Since S is purely infinite, SS

∼= (S⊕S)S

(see [5, Theorem 10.16], and so S ∼= M2(S). Now we show that every element
in M2(S), where S is a regular right self-injective ring is a sum of two units. By
[1, Corollary 2.6], every A ∈ M2(S) admits a diagonal reduction, i.e. there exist
invertible matrices P and Q in M2(S) such that PAQ is a diagonal matrix, say“ a 0

0 b

”
. Then PAQ =

“ a 0
0 b

”
=

“ a 1
1 0

”
+

“ 0 −1
−1 b

”
is a sum of two units and so A is

a sum of two units. So, every element of M2(S) and hence every element of S is
a sum of two units. Since, T is a directly finite, regular, right self-injective ring,
T ∼= R1 × R2 where R1 is Type If and R2 is Type IIf [5, Theorem 10.22].

First, we show that every element of R1 is a sum of two units. Since by
[5, Theorem 10.24], R1

∼= ΠMn(Si) where each Si is an abelian regular right self-
injective ring, it is enough to show that each element of Mn(Si) is a sum of two
units. But, if n > 1, then as argued above, we are through. So, it is enough to show
that every element in an abelian regular ring Si, which has no factor isomorphic to
Z2, is a sum of two units. Let a ∈ Si. Suppose, to the contrary, that a is not a sum
of two units. Let Ω = {I : I is an ideal of Si and a + I is not a sum of two units in
Si/I}. Clearly, Ω is non-empty and it can be easily checked that Ω is inductive (for
example see [4, Theorem 2]). So, by Zorn’s Lemma, Ω has a maximal element, say,
I. Clearly, Si/I is an indecomposable ring and hence has no central idempotent.
But, as Si/I is abelian regular, Si/I must be a division ring. Since, a + I is not
a sum of two units in Si/I, it follows that Si/I ∼= Z2, a contradiction. Thus, each
element of R1 is a sum of two units.
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Finally, we show that every element of R2 is a sum of two units. Since R2

is Type IIf , it has no non-zero abelian idempotents. Therefore, by [5, Proposi-
tion 10.28] there exists an idempotent e ∈ R2 such that (R2)R2

∼= (eR2 ⊕ eR2)R2

and so R2
∼= M2(eR2e), and as every element of M2(eR2e) is a sum of two units

as seen above, every element of R2 is a sum of two units. Therefore, each element
of T is a sum of two units. Hence, every element of R is a sum of two units. This
completes the proof.

Let V be a right vector space over a division ring D, then EndD(V ) is a regular,
right self-injective ring. It is easy to see that the identity of EndD(V ) is a sum of two
units, except when dim(VD) = 1 and D = Z2 (see [16, Lemma]). As a consequence,
we get the following result.

Corollary 2 (Zelinsky, [16]). Every element of EndD(V ) is a sum of two units,
except when dim(VD) = 1 and D = Z2.

Because every right self-injective ring is an exchange right quasi-continuous ring,
the following result is a generalization of Theorem 1.

Theorem 3. Let MS be a quasi-continuous module with finite exchange property
and R = EndS(M). Then every element of R is a sum of two units if and only if
no factor ring of R is isomorphic to Z2.

Proof. Assume that no factor ring of R is isomorphic to Z2. Let ∆ = {f ∈
R: ker f ⊂e M}. Then ∆ is an ideal of R. By [10, Corollary 3.13], R = R/∆ ∼=
R1⊕R2, where R1 is regular, right self-injective and R2 is an exchange ring with no
non-zero nilpotent element. We have already shown in Theorem 1 that each element
of R1 is a sum of two units. Since, R2 has no non-zero nilpotent element, each idem-
potent in R2 is central. Now, if any element a ∈ R2 is not a sum of two units, then
as in the proof of Theorem 1, we find an ideal I of R2 such that x = a+I ∈ R2/I is
not a sum of two units in R2/I and R2/I has no central idempotent. This implies
that R2/I is an exchange ring without any non-trivial idempotent, and hence it
must be local. Let T = R2/I. Then x + J(T ) is not a sum of two units in T/J(T ),
which is a division ring. Therefore, T/J(T ) ∼= Z2, a contradiction. Hence, every ele-
ment of R2 is also a sum of two units. Therefore, every element of R is a sum of two
units. Next, we observe that ∆ ⊆ J(R). Suppose to the contrary that ∆ � J(R),
then ∆ contains a non-zero idempotent, say e. But as ker(e) ⊆e M , ker(e) = M

and so e = 0, a contradiction. Thus ∆ ⊆ J(R). Therefore, we may conclude that
every element of R is a sum of two units. The converse is obvious.

Remark 4. As continuous module is quasi-continuous and also has exchange prop-
erty [10, Theorem 3.24], it follows that in the endomorphism ring of a continuous
(and hence also of injective and quasi-injective) module, every element is a sum of
two units if and only if no factor of the endomorphism ring is isomorphic to Z2.



April 16, 2007 19:47 WSPC/171-JAA 00218

Right Self-Injective Rings in Which Every Element is a Sum of Two Units 285

A module M is called pure-injective if for any module A and any pure submodule
B of A, every homomorphism f : B → M extends to a homomorphism g:A → M .
A module M is called cotorsion if Ext1R(F, M) = 0 for every flat R-module F ,
equivalently if every short exact sequence 0 → M → E → F → 0 with F flat,
splits. The ring R is called right cotorsion (resp. right pure-injective) if RR is
cotorsion (resp. right pure-injective). By [6], if M is a flat cotorsion right R-module
and S = End(MR), then S/J(S) is a regular, right self-injective ring.

Corollary 5. Every element of the endomorphism ring of a flat cotorsion (in par-
ticular, pure injective) module is a sum of two units if and only if no factor ring is
isomorphic to Z2.

Vámos [15, Theorem 21] proves that if R is a regular right self-injective ring
such that no non-zero corner ring of R is Boolean then every element of R is a
sum of two units. But the condition that no non-zero corner ring is Boolean, is
not necessary for every element in a regular right self-injective ring to be a sum of
two units. For instance, if S is a self-injective Boolean ring, then every element of
R = Mn(S), n > 1, is a sum of two units (see the proof of Theorem 1) although
R has non-zero Boolean corner rings. It may further be noted that the condition
of Vámos, namely no non-zero corner ring is Boolean, is not sufficient even if we
replace a right self-injective ring by a commutative continuous ring as is shown in
the following example.

Example 6. Let F be a field with Z2 as proper prime subfield. Set Fn = F

and Kn = Z2 for each n ∈ N and set Q = ΠNFn. Set R = {x = (xn)N ∈ Q:
xn ∈ Kn for all but finitely many n}. Then R is continuous (see [5, Example 13.8].
As idempotents in R are just the elements with each component either 0 or 1, no
non-zero corner ring of R is Boolean. But, clearly the identity of R is not a sum of
two units.

We conclude by showing an application of our result for group rings.

Proposition 7. If R is a right self-injective ring and G a locally finite group, then
every element of RG is a sum of two units unless R has a factor ring isomorphic
to Z2.

Proof. Let α be any arbitrary element of RG then α = r0+r1g1+r2g2+· · ·+rngn.

Let H = 〈g1, . . . , gn〉 be the subgroup generated by g1, . . . , gn. Since G is locally
finite, H must be finite. Clearly, α ∈ RH . Now, since R is right self-injective and
H is a finite group, the group ring RH is right self-injective. Note that if R has
no factor ring isomorphic to Z2 then the group ring RH also has no factor ring
isomorphic to Z2. Therefore, by Theorem 1, α = u1 + u2 where u1, u2 ∈ RH are
units. But then u1, u2 will be units in RG also. Hence, every element of RG is a
sum of two units.
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