Recorded Zoom presentations
- Discretizing Lp norms, (joint work with Dorsa Ghoreishi), March 16 2021, 1 hour talk in Codex Seminar. We discuss the problem of discretizing the Lp-norm on subspaces and its connection with frame theory. It is known that if X is an n-dimensional subspace of L2[0,1] then the L2-norm may be discretized on X using m on the order of n sampling points as long as X satisfies a necessary boundedness condition. In contrast to this, we construct an n-dimensional subspace X of L1[0,1] which satisfies the necessary boundedness condition but the L1-norm cannot be discretized on X using m on the order of n sample points. We conclude the talk by sketching a proof that discretizing a continuous frame to do stable phase retrieval requires simultaneously discretizing both the L2-norm and the L1-norm on the range of the analysis operator.
- A positive Schauder basis for L_2, (joint work with Alex Powell and Mitchell Taylor), May 1 2020, 1 hour talk in Banach spaces webinar. Johnson and Schechtman recently constructed a Schauder basis for L1 using only non-negative functions. We present this construction and explain why it does not work in Lp for p>1. We then discuss our construction of a Schauder basis for L2 using only non-negative functions. Furthermore, for the case p not equal to 2 our construction allows us to build a basic sequence of positive functions in Lp whose closed span contains Lp isomorphically as a subspace.
- W. Alharbi, D. Freeman, D. Ghoreishi, C. Lois, and S. Sebastian Stable phase retrieval and perturbations of frames, submitted, 13 pages.
- P. Balazs, D. Freeman, R. Popescu, and M. Speckbacher, Quantitative bounds for unconditional pairs of frames, submitted, 19 pages.
- D. Freeman, T. Oikhberg, B. Pineau, and M.A. Taylor, Stable phase retrieval in function spaces, submitted, 57 pages.
- W. Alharbi, S. Alshabhi, D. Freeman, and D. Ghoreishi, Locality and stability for phase retrieval, submitted, 14 pages.
- K. Beanland and D. Freeman, Shrinking Schauder frames and their associated spaces, submitted 18 pages.
- R. Calderbank, I. Daubechies, D. Freeman, and N. Freeman, Stable phase retrieval for infinite dimensional subspaces of L2(ℝ), submitted, 27 pages.
- D. Freeman and D. Ghoreishi, Discretizing Lp norms and frame theory, J. Math. Anal. and Applications, (2022) 17 pages. doi.org/10.1016/j.jmaa.2022.126846
- D. Freeman, Th. Schlumprecht, and A. Zsák, Banach spaces for which the space of operators has 2𝔠 closed ideals, Forum of Mathematics, Sigma, 9, E27, (2021) 20 pages. doi:10.1017/fms.2021.23
- D. Freeman, Th. Schlumprecht, and A. Zsák,
Addendum Closed ideals of operators between the classical sequence spaces. Bull. Lond. Math. Soc, 53, no. 2, (2021), 593-–595.
- D. Freeman, A.M. Powell, and M. Taylor, A Schauder basis for L2 consisting of non-negative functions, Mathematische Annalen, (2021) 28 pages, https://doi.org/10.1007/s00208-021-02143-4
- J. Eisner and D. Freeman, Continuous Schauder frames for Banach spaces, J. Fourier Anal. and Apps., 26 , no. 4, (2020), 30 pages, https://doi.org/10.1007/s00041-020-09776-0
- J.A. Chavez-Dominguez, D. Freeman, and K. Kornelson Frame potential for finite-dimensional Banach spaces. , Linear Algebra and Applications, 578 (2019), 1--26.
- D. Freeman and D. Speegle, The discretization problem for continuous frames, Advances in Math., 345 (2019), 784--813.
- D. Freeman, E. Odell, B. Sari, and B. Zheng, On spreading sequences and asymptotic structures, (with , Trans. AMS, 370, no. 10, (2018) 6933--6953.
- D. Freeman, Th. Schlumprecht, and A. Zsak, Closed ideals of operators between the classical sequence spaces, Bulletin of the London Math. Soc., 49 , no. 5 (2017), 859--876.
- K. Beanland, D. Freeman, R. Causey, and B. Wallis Classes of operators determined by ordinal indices, J. Functional Analysis, 271, no. 1, (2016) 1691--1746.
- P. G. Casazza, D. Freeman, and R. Lynch, Weaving Schauder frames, J. Approximation Theory, 211 (2016) 42--60.
- F. Baudier, D. Freeman, Th. Schlumprecht, and A. Zsak, The metric geometry of the Hamming Cube and applications, Geometry and Topology, 20 (2016), 1427--1444.
- K. Beanland, D. Freeman, and P. Motakis The stabilized set of p's in Krivine's Theorem can be disconnected,
Advances in Math., 281 (2015), 553--577.
- K. Beanland, D. Freeman, and R. Liu, Upper and lower estimates for Schauder frames and atomic decompositions,
Fund. Math. 231 (2015), 161--188.
- D. Freeman, R.
Hotovy, and E. Martin, Moving finite unit norm tight frames for Sn, Illinois J. Math., 58 (2014), no. 2, 311--322
- D. Freeman, E. Odell, Th. Schlumprecht, and A. Zsak, Unconditional structures of translates for
Lp(Rd). Israel
J. Math., 203 (2014), no. 1, 189--209.
- P.N. Dowling, D. Freeman, C.J. Lennard, E. Odell, B. Randrianantoanina, and B. Turett A weak Grothendiek compactness principle for Banach spaces with a symmetric basis.
Positivity, 18 (2014), no. 1, 147--159.
- K. Beanland and D. Freeman, Uniformly factoring weakly compact operators. J. Functional Anal, 266, (2014), no. 5, 2921--2943.
- D. Freeman, E. Odell, B. Sari, and Th. Schlumprecht, Equilateral sets in uniformly smooth Banach spaces.
Mathematika, 60 (2014), no. 01, 219--231.
- D. Freeman, D. Poore, A. R. Wei, and M. Wyse, Moving Parseval frames for vector bundles. Houston J. of Math., 40, (2014), no. 3, 817--832.
- P.N. Dowling, D. Freeman, C.J. Lennard, E. Odell, B. Randrianantoanina, and B. Turett, A weak Grothendiek compactness principle.
J. Functional Analysis 263 (2012), no. 5, 1378--1381.
- S.A. Argyros, D. Freeman, R.
Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D.Z. Zisimopoulou, Embedding Banach spaces into spaces with very few operators. J. Functional Anal. 262 (2012), no. 3, 825--849.
- K. Beanland and D. Freeman, Ordinal ranks on weakly compact and Rosenthal operators. Extracta Mathematicae, 26 (2)
(2011), 173--194.
- S. Dilworth, D. Freeman, E. Odell, and Th. Schlumprecht, Greedy bases for Besov spaces. Constructive Approx., 34 (2011), no. 2, 281--296.
- D. Freeman E. Odell, and Th. Schlumprecht, The universality of l_1 as a dual space. Math. Annalen.
351 (2011), no. 1, 149--186.
- D. Freeman, E. Odell, Th. Schlumprecht, and A. Zsak. Banach spaces of bounded Szlenk index II , Fund. Math. 205 (2009) 161--177.
- D. Freeman, Weakly null sequences with upper estimates.
Studia Math. 184 (2008), no. 1, 79--102.
- K. Dykema, D. Freeman, K. Kornelson, D. Larson, M.
Ordower, and E. Weber, Ellipsoidal tight frames and projection decompositions of
operators. Illinois J. Math. 48 (2004), no. 2,
477--489.
- Doctoral Dissertation: Upper estimates for Banach spaces, 2009. (advised by Thomas Schlumprecht)
- B.S. thesis: Ellipsoidal and convex tight frames, 2003. (advised by Ruddy Gordh and Elwood Parker)